
A Multivariate Dynamic Statistical Model of the
Global Carbon Budget 1959 – 2020∗

Mikkel Bennedsen(a,b) Eric Hillebrand (a,b) Siem Jan Koopman(b,c)

(a)
Department of Economics and Business Economics, Aarhus University, Denmark

(b)
Center for Research in Econometric Analysis of Time Series (CREATES), Denmark

(c)
Department of Econometrics, Vrije Universiteit Amsterdam, The Netherlands

September 26, 2022

Abstract

We propose a multivariate dynamic statistical model of the Global Carbon Budget as represented
in the annual data set made available by the Global Carbon Project, covering the sample period
1959–2020. The model connects four main objects of interest: atmospheric carbon dioxide
(CO2) concentrations, anthropogenic CO2 emissions, the absorption of CO2 by the terrestrial
biosphere (land sink), and by the ocean and marine biosphere (ocean sink). The model captures
the global carbon budget equation, which states that emissions not absorbed by either land or
ocean sinks must remain in the atmosphere and constitute a flow to the stock of atmospheric
concentrations. Emissions depend on global economic activity as measured by World Gross
Domestic Product while sink activities depend on the level of atmospheric concentrations and the
Southern Oscillation Index. We derive the time-series properties of atmospheric concentrations
from the model, showing that they contain one unit root and a near-second unit root. The
statistical system allows for the estimation of key parameters of the global carbon cycle and for
the assessment of estimation uncertainty. It also allows for the estimation and the uncertainty
assessment of related variables such as the airborne fraction and the sink rate. We provide
short-term forecasts of the components of the global carbon budget.
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1 Introduction

We propose a multivariate dynamic statistical model for the main time series variables contained in

the most recent vintage of the Global Carbon Budget (GCB) data set from Friedlingstein et al. (2022).

The model allows for the statistical estimation of key parameters of the global carbon cycle from the

data and the assessment of the corresponding estimation uncertainty. It implies near-second unit root

time series dynamics for atmospheric CO2 concentrations. It allows for the statistical assessment of

the airborne fraction and the sink rate and for short-term forecasts of the components of the global

carbon budget.

The model connects atmospheric carbon dioxide (CO2) concentrations, anthropogenic emissions,

and uptake by the terrestrial biosphere (land sink) and by the ocean and the marine biosphere (ocean

sink). The model has the global carbon budget equation as its cornerstone. It specifies both sinks as

depending on atmospheric CO2 concentrations and the El-Niño/Southern Oscillation (ENSO) cycle,

and it specifies emissions as a random walk with drift determined by economic growth. The dynamics

of atmospheric CO2 concentrations are determined by the global carbon budget equation. Since sinks

activity depends on concentrations in turn, the model captures simultaneity in the determination

of the GCB variables. This allows for the data-driven study of the global carbon cycle employing

a relatively small model for the GCB data set that consists of both observational data and output

from several large-scale general circulation models (GCMs). Parameter estimates are obtained from

the historical GCB data by maximum likelihood, and parameter uncertainty can be evaluated by

means of statistical standard errors. In contrast, this uncertainty cannot be measured from GCMs

or small-scale emulators.

The Global Carbon Project1 curates and maintains a large database of time series variables

that describe the dynamics of the carbon cycle in order to provide, for example, insights into how

anthropogenically emitted CO2 is transferred to the atmosphere, the oceans, and the terrestrial

biosphere. The data are updated and published annually in a series of reports entitled “The Global

Carbon Budget”. Understanding the dynamics of the carbon cycle is vital for understanding the

climate system in general and climate change in particular (e.g. Canadell et al., 2021).

The GCB data have previously been employed for various statistical analyses. For instance,

a strand of literature uses these data to investigate whether the rate at which the carbon sinks

absorb CO2, as measured through either the so-called airborne fraction or sink rate, is decreasing.

This literature is represented by, among others, Raupach et al. (2008), Knorr (2009), Le Quéré et al.

1https://www.globalcarbonproject.org.
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(2009), Gloor et al. (2010), Raupach et al. (2014), and Bennedsen et al. (2019). Other studies propose

to use the residual of the GCB data, referred to as the budget imbalance, to assess whether CO2

emissions are reported truthfully by individual nations; see, e.g., Peters et al. (2017) and Bennedsen

(2021). A common feature of previous statistical analyses of the GCB data is that model dimensions

are limited to univariate or bivariate settings. These earlier studies do generally not consider all GCB

variables simultaneously. There are a few early studies that assess parameter uncertainty in models

of the global carbon cycle with methods inspired by statistics (Enting and Lassey, 1993; Parkinson

and Young, 1998).

The key focus of this study is to incorporate all the main GCB time series variables into a

single multivariate dynamic statistical model and estimate it using standard maximum likelihood

methods. A crucial implication of a simultaneous approach is that it allows us to exploit the carbon

budget equation to connect the various GCB variables. The carbon budget equation is an accounting

identity expressing the fact that, since the Earth system is closed, anthropogenically released CO2

must necessarily end up in either the atmosphere, the oceanic biosphere, or the terrestrial biosphere;

see Friedlingstein et al. (2022). Our simultaneous approach thus provides a dynamic statistical model

that is coherent with the physics underlying the GCB.

We first develop a nonlinear statistical model of the GCB, where the nonlinearity originates in the

relationship between the CO2 uptake of the sinks and the level of atmospheric CO2 concentrations.

Although such a nonlinear relation is expected on theoretical grounds (e.g., Bacastow and Keeling,

1973; Gifford, 1993; Joos et al., 1996), we find that a linear specification is adequate for the historical

data for the period 1959–2020. Approximate linearity of the sink-concentrations relationship is also

documented in previous work (e.g., Knorr, 2009; Raupach, 2013), and it is likely to be a consequence

of the relatively low levels of atmospheric CO2 concentrations over the period 1959–2020. Nonlinear

effects in the sink-concentrations relationship could soon become important if atmospheric concen-

trations continue to rise (Canadell et al., 2007b; Raupach, 2013; Raupach et al., 2014; Bennedsen

et al., 2019).

From the linear system equations of this model, we derive the time series dynamics of atmospheric

CO2 concentrations. We find that CO2 concentrations follow single unit root dynamics that are,

however, numerically quite close to a second unit root, and that they approach a second unit root as

atmospheric concentrations increase. We show that the result is due to the dependence of the sinks

on concentrations.

Motivated by our findings of linearity of the sink-concentration relationship over the period 1959–
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2020, we consider a multivariate linear dynamic statistical model of the GCB. The model features a

measure of global economic activity (World Gross Domestic Product, GDP) as a driver of emissions

and the Southern Oscillation Index (SOI) variable as a proxy for the ENSO in the sinks dynamics. In

addition, the model includes a number of dummy variables for specific unusual events in atmospheric

concentrations and in the relation of emissions and World GDP. We present the estimation results that

include parameter estimation uncertainty measures. Using this model, we present a comprehensive

statistical analysis of the Global Carbon Budget data. The statistical features of the historical in-

sample estimates of all GCB variables are documented in detail, including those of related variables

such as the budget imbalance, airborne fraction, and sink rate. All presented parameter estimates

are accompanied with statistical standard errors while the in-sample estimates are accompanied with

confidence intervals. We show how the modeling framework can be used for the simultaneous and

coherent forecasting of all GCB variables.

The remainder of the paper is organized as follows. Section 2 introduces the model, discusses its

key assumptions, provides the details of the state space representation of the dynamic model, and

investigates the model-implied dynamic properties of atmospheric concentrations. Section 3 describes

the data set that we use and discusses time series properties of the data series. Section 4 presents

and discusses the estimation results and the residual diagnostics for a model that includes World

GDP and SOI variables. Section 5 discusses the statistical forecasting of the GCB variables based on

our model, the in-sample estimation of key variables such as airborne fraction and sink rate, and the

diagnostic analysis of the GCB imbalance. Section 6 concludes. Mathematical derivations, details

on stationarity tests, an extensive Monte Carlo simulation study, a model validation exercise, and a

forecast model for the SOI are provided in supplementary material.

2 A dynamic statistical model for the global carbon budget

We develop a statistical state space model for the global carbon budget (GCB) comprising the

following four variables: atmospheric CO2 concentrations (C∗t ), anthropogenic CO2 emissions (E∗t ),

CO2 uptake by the terrestrial biosphere (land sink, S LND∗t ), and CO2 uptake by the ocean and

marine biosphere (ocean sink, S OCN∗t ). We denote the unobserved states in the state-space model

with asterisks; later in this section, we connect the unobserved states with the data series, for which

we use the same variable names without asterisk.

The flow series E∗t , S LND∗t , and S OCN∗t are measured in gigatons of carbon (GtC) per year;

the stock series C∗t is measured in GtC. The foundation of our statistical model is the global carbon
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budget equation as given by (Friedlingstein et al., 2022)

G ATM∗
t+1 := C∗t+1 − C∗t = E∗t+1 − S LND∗t+1 − S OCN∗t+1,

where G ATM∗ represents the change in atmospheric concentrations in GtC per year. The budget

equation expresses the fact that emissions not absorbed by land or ocean sinks constitute a flow to

the stock of atmospheric concentrations. It also implies a dynamic process for concentrations,

C∗t+1 = C∗t + E∗t+1 − S LND∗t+1 − S OCN∗t+1. (1)

The updating equation (1) for C∗t serves as the cornerstone for our statistical model. We complete

the model by specifying dynamic equations for the variables S LND∗t , S OCN∗t , and E∗t .

2.1 Land and ocean sinks

The sink variables S LND∗t and S OCN∗t represent the CO2 fluxes from the atmosphere to the land

biosphere and the ocean, respectively, in year t. The magnitude of these uptakes depends primarily

on the level of CO2 concentrations in the atmosphere C∗t . In the case of S LND∗, this relation

is due to the fertilization effect, where increased levels of CO2 in the atmosphere cause increased

CO2 uptake by the terrestrial biosphere (e.g., Bacastow and Keeling, 1973; Gifford, 1993). In the

case of S OCN∗, the relation is due to the fact that increased levels of CO2 in the atmosphere will,

other things being equal, cause the partial pressure differential for CO2 between the atmosphere and

the surface layer of the ocean to increase, which in turn implies an increased CO2 uptake by the

ocean (Joos et al., 2001). For these reasons, we expect that S LND∗ and S OCN∗ will be positively

related to C∗t . Further, for moderate levels of atmospheric CO2 concentrations it has been found

that these relations are approximately linear (Raupach, 2013). However, due to a saturation effect

it is expected that this approximate linearity will likely break down as the level of C∗t increases

(Canadell et al., 2007b; Le Quéré et al., 2007). Whether the current level of atmospheric CO2

concentrations (C2020 ≈ 880 GtC) implies that we have already entered a regime where nonlinear

effects in the sink-concentrations relationship become important has been the subject of much recent

work (e.g. Knorr, 2009; Le Quéré et al., 2009; Gloor et al., 2010; Raupach et al., 2014; Bennedsen

et al., 2019). Nonlinear functional forms of the sinks have been developed and proposed by, among

others, Bacastow and Keeling (1973), Gifford (1993), and Joos et al. (1996).

Although the level of atmospheric CO2 concentrations is by far the most important factor in
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determining the long-term behavior of the sinks, the short-term can also be influenced by factors

other than the global carbon budget as defined here, the El-Niño/Southern Oscillation (ENSO) cycle

explaining most of the variation. These considerations lead us to specify the following dynamic

equations, which are possibly nonlinear in atmospheric CO2 concentrations, C∗,

S LND∗t+1 = c1 + fSL(C∗t+1) + b1ENSOt+1, S OCN∗t+1 = c2 + fSO(C∗t+1) + b2ENSOt+1, (2)

where c1, c2, b1, b2 ∈ R are constants, fSL(·) and fSO(·) are particular sink functions for land and

ocean, respectively, and ENSOt+1 denotes a measure of the ENSO activity in year t+ 1.

In this paper, we accommodate the nonlinear aspects by including time-varying parameters in

the model. To motivate this approach, consider the function fSL(·) in the land sink equation in (2),

which we can rewrite as fSL(C∗t+1) = f ∗SL(C∗t+1)C
∗
t+1 where f ∗SL(C∗t+1) = fSL(C∗t+1)/C

∗
t+1. By treating

f ∗SL(C∗t+1) as a time-varying parameter β̃1,t+1 and ignoring its dependence on C∗t+1, we can consider,

for example, a random walk specification for β̃1,t+1, that is, β̃1,t+1 = β̃1,t + ω1,t, where ω1,t is an

independently and identically distributed random innovation variable with mean zero and variance

σ2
ω,1 > 0, and it is mutually independent from all other innovations in the model. The resulting

approximation fSL(C∗t+1) ≈ β̃1,t+1C
∗
t+1 delivers a specification that is nonlinear because it features

the product of two state variables. The same arguments can be used for the ocean sink equation in (2)

to obtain a time-varying parameter specification fSO(C∗t+1) ≈ β̃2,t+1C
∗
t+1. Simulation experiments,

presented in the supplementary material S1, show high levels of accuracy of this approximation for

various nonlinear sink specifications, including those from Bacastow and Keeling (1973), Gifford

(1993), and Joos et al. (1996).

2.2 Emissions

The dynamic evolution of emissions E∗ is assumed to follow a random walk process with a drift

governed by global economic activity (ECON), capturing the strong dependence that has historically

existed between economic activity and anthropogenic CO2 emissions. Bennedsen et al. (2021) show

that U.S. CO2 emissions can be modeled effectively by industrial production indices, leading to

accurate forecasts. Friedlingstein et al. (2022) and earlier vintages of the GCB (Friedlingstein et al.,

2020, 2019; Le Quéré et al., 2018, 2017) model and forecast emissions by measures of economic

activity, following Raupach et al. (2007). The energy economics literature has discussed the relation

of energy consumption and macroeconomic activity at length (e.g., Stern, 1993, 2000; Oh and Lee,
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2004; Lee, 2005; Zhang and Cheng, 2009; Ozturk, 2010). Our dynamic model for E∗ is therefore

given by

E∗t+1 = E∗t + β5,t+1∆ECONt+1 +XE
t , (3)

where ∆ECONt+1 = ECONt+1−ECONt is the change in economic activity from year t to year t+ 1,

β5,t+1 is a time-varying coefficient of economic activity, and XE
t is a stationary random innovation.

Analogously to the time-varying coefficients in the sink equations, we model β5 as a random walk:

β5,t+1 = β5,t +ω5,t. Conditional on the exogenous variables ENSO and ECON, XE
t is the only source

of randomness driving the budget variables (1)–(3), which implies that the randomness in the state

variables of the statistical model of the GCB is due only to XE
t . In our study, we consider a stationary

first-order autoregressive process for XE
t , which we specify as

XE
t+1 = φE X

E
t + κt, (4)

where |φE| < 1 is the autoregressive coefficient and κt is a sequence of mean-zero independent random

variables.

2.3 Outlier events

We include a number of dummy variables in our model to capture outliers and structural breaks.

The selection of the dummies was conducted using a variety of methods and criteria. The point of

departure was a purely data-driven search with AutoMetrics (Doornik, 2009; Pretis et al., 2018).

The set of selected dummies was modified by a search with the following criteria: (i) The number of

dummies should be minimal. (ii) The dummies should have an identifying event or narrative. (iii) The

dummies should be statistically significant at least at the 10% level. (iv) The numerical maximum

likelihood should be reasonably close to its highest value obtained from models with a larger set of

dummies. (v) All considered residual diagnostics should have values within an appropriate range.

(Details of the estimation and residual diagnostics are discussed below in Section 4.)

The final set of dummy variables contains: (1) 1991 in the state equation for G ATM∗ captures

the Pinatubo minimum (Bousquet et al., 2000; Angert et al., 2004). (2) 1991 in the state equation

for E∗: The collapse of the Soviet Union, the 1990 oil price shock, and the first Gulf War in 1991 are

associated with a decrease in emissions. The relation between oil price crises, energy consumption,

and macroeconomic activity has been discussed at length in the econometrics and energy economics

literature, see, e.g., Hamilton (1983); Perron (1989); Hamilton (1996, 2003); Barsky and Kilian (2004);
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Kilian (2008, 2009); Stern and Kander (2012). (3) 1997 in the measurement equation for E: There

is a strong spike in levels of E in 1997 due to burning of South East Asian peatlands (Houghton and

Nassikas, 2017). (4) 1996 in variance: Panels [j], [k], and [l] of Figure 1, presented below, show that

first differences of E inherit an increase in variance from first differences of land-use change (E LUC)

in 1996. See the supplementary material S2 for a discussion of possible reasons for this increase in

variance.

2.4 State equations for the GCB variables

In summary, the dynamic model for the GCB variables is specified as

C∗t+1 = C∗t + E∗t+1 − S LND∗t+1 − S OCN∗t+1 + β7I1991, (5)

S LND∗t+1 = c1 +
β1,t+1

C1750

C∗t+1 + β3ENSOt+1, (6)

S OCN∗t+1 = c2 +
β2,t+1

C1750

C∗t+1 + β4ENSOt+1, (7)

E∗t+1 = E∗t + β5,t+1∆ECONt+1 + β8I1991 +XE
t , (8)

where we set C1750 = 593.43GtC as the level of atmospheric CO2 concentrations in the pre-industrial

era, here taken as the level in the year 1750, and use it as a scaling of the time-varying coefficients in

the sinks equations. As explained in the subsection above, the variance of the E∗ innovation XE
t is

subject to a break. We have XE
t+1 = φEX

E
t + κt with κt ∼ N(0, σ2

η4
× (s2E)It≥1996), defining a variance

change from 1996 onwards. The variables IYEAR denote indicator (dummy) variables for the year

stated.

Equations (5) to (8) specify the state equations for the variables of interest. In addition, the state

vector in the state space model contains the stationary process XE
t , the coefficient processes β1,t,

β2,t, β5,t, and further stationary processes in the measurement equations to be defined in the next

section. Since the coefficient processes β1,t and β2,t are state processes in the model, the products

β1,tC
∗
t and β2,tC

∗
t render the model nonlinear.

2.5 Observation equations for the GCB variables

Annual observations of the four variables at a global level are provided by the Global Carbon Project

(Friedlingstein et al., 2022) for the years from 1959 up to 2020. In this study, they are denoted with

the same variable names but without the asterisks. Atmospheric CO2 concentrations are instru-
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mental measurements. Emissions are computed from the use of fossil energy carriers as reported

by countries’ authorities. To compute the variable “anthropogenic emissions”, we take fossil fuel

emissions plus land use change emissions minus the cement carbonation sink, see also Section 3

below. These observations are subject to measurement errors and other irregularities due to data

collection. The observations of the land and ocean sinks, on the other hand, are averages over the

outputs of several GCM/Earth system models selected by the Global Carbon Project. We will treat

these observations statistically as data in our model. For the sinks processes, the model should be

understood as providing an approximation to the more complex climate models, and it only captures

parts of the more detailed interrelations in the climatologically and mathematically more involved

large scale climate models. We show, however, that our model approximations are sufficiently ac-

curate for a statistical analysis of the historical data, in the sense that they render the residuals

statistically indistinguishable from white noise. The deviations of the observed variables (without

asterisk) from the unobserved model variables (with asterisk) are therefore a mix of measurement

errors (in particular, for the concentrations and emission variables) and approximation errors (in

particular, for the land and ocean sink variables).

Given the dynamic specifications of the four model variables, we complete our statistical model

for the observed variables with the measurement or observation equations, which are given by

Ct = C∗t +X1,t, (9)

S LNDt = S LND∗t +X2,t, (10)

S OCNt = S OCN∗t +X3,t, (11)

Et = E∗t + β6I1997 +X4,t, (12)

whereX1,t andX4,t, which are associated with Ct and Et, respectively, can be mainly regarded as mea-

surement errors, whereas X2,t and X3,t, which are associated with S LNDt and S OCNt, respectively,

mainly represent processes and features that are not captured by our statistical model. The time in-

dex t = 1, . . . , T counts years, where T is the number of available yearly observations for the four vari-

ables. The observed variables are collected in the observation vector yt = (Ct, S LNDt, S OCNt, Et)
′.

In our study, we consider stationary first-order autoregressive processes for Xi,t, for i = 1, . . . , 4,

which we specify as

Xi,t+1 = φiXi,t + ηi,t, (13)

where |φi| < 1 is the autoregressive coefficient and ηi,t is an independently and identically distributed
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random innovation variable with mean zero and variance σ2
i > 0, and it is mutually independent from

innovation κt in equation (4), for i = 1, . . . , 4. We allow for correlations between the innovations ηi,t

and ηj,t, as denoted by rij, for a selection of pairs i, j = 1, . . . , 4.

The dummy variable for 1997 in emissions captures the peat burning events in equatorial Asia

(Houghton and Nassikas, 2017). It is included in the measurement equation because it is an outlier

in levels of emissions. Treating it in equation (8) for differences in emissions instead would require

two dummies.

2.6 State space representation of the GCB model

When the sink variable specifications in (2) are nonlinear, the state space representation is nonlinear

as well. The nonlinear state space representation of the GCB model (5)–(12) is obtained by defining

the state vector αt = (C∗t , S LND∗t , S OCN∗t , E
∗
t , β1,t, β2,t, β5,t, ξ

′
t)
′ which contains all unobserved

variables in the GCB model, the time-varying coefficients, and the measurement error and innovation

vector ξt = (X1,t, . . . , X4,t, X
E
t )′.

The nonlinear sink equations do not only affect the state equations for the sink variables in (2),

but also the budget equation in (5). Hence, we have a fully nonlinear GCB model that can be

expressed in state space form as

αt+1 = T̃ (αt, ξt), yt = Z̃(αt, ξt), (14)

where T̃ () and Z̃() are nonlinear vector equations that capture the specifications implied by the

equations (5)–(8).

In the empirical section 4 we analyze the nonlinear model by means of the Extended Kalman filter.

We find that the time-varying parameters β1,t and β2,t are estimated to be constant for the historical

period 1959–2020, indicating that a linear specification of the sink-concentrations relationship is

adequate over this time period. Hence the GCB model reduces to a linear dynamic statistical model

which we discuss in more detail below.

The GCB modeling framework above reduces to a set of linear equations when we consider linear

approximations for the sink variables in (2), which obtain when the time-varying coefficients of the

sinks equations are assumed to be constant: β1,t = β1 > 0 and β2,t = β2 > 0, for all t. (The

time-varying emissions intensity β5,t does not introduce nonlinearity in the model, since ECONt is

an exogenous variable and not an element of the state vector. It is also estimated to be constant on
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the sample.) In the linear case, the dynamic equations for the sink variables can be expressed as

fSL(C∗t+1) = c1 +
β1
C1750

C∗t+1, (15)

fSO(C∗t+1) = c2 +
β2
C1750

C∗t+1, (16)

where the constants ci, for i = 1, 2, are intercepts, the slopes βi/C1750 > 0, for i = 1, 2, are fractions

of concentrations that are absorbed annually by the two sink variables, and C1750 = 593.43GtC is set

equal to the concentration levels in 1750. In the supplementary material S3, we show how the sink

equations of Bacastow and Keeling (1973), Gifford (1993), and Joos et al. (1996), are approximated

by these linear specifications and the scaling of the parameters by pre-industrial concentrations C1750.

The linear system is then given in standard state space form as

yt = Ztαt,

αt+1 = Ttαt + ηt, ηt ∼ N(0, Qt), (17)

where yt is the vector of observations defined in Section 2.5 and αt is the state vector as defined in this

section. The GCB model does not feature observation disturbances in the measurement equation for

yt. The deviations of the unobserved state processes (with asterisks) from the observations (without

asterisks) are given by covariance-stationary processes Xi,t, for i = 1, . . . , 4, which are themselves

unobserved processes in the state equation. The key assumption for the linear GCB model in state

space form is that the two equations in (17) are linear in the state vector αt and that the disturbance

vector ηt is from a normal distribution. It requires the system matrices Zt, Tt and Qt to be fixed

(non-stochastic) at time t. In Section S4 of the supplementary material, we define the system

matrices Zt, Tt, and Qt for the linear model, and we confirm that they are fixed. Given the linear

Gaussian system, the Kalman filter provides the minimum mean-squares estimator (MMSE) of the

state vector αt given the past observation vectors y1, . . . , yt−1 and its mean-squared error (MSE)

variance matrix, for t = 1, 2, . . ., recursively. The Kalman filter further provides the observation

prediction error vectors and their variance matrices, which provide the input for computing the

Gaussian likelihood function via the prediction error decomposition. The fixed system matrices

contain some unknown coefficients which are estimated by numerically maximizing the log-likelihood

function using a quasi-Newton method. The standard maximum likelihood (ML) theory applies to

this estimation process. For example, we obtain the standard errors of the ML estimates from the

Fisher information matrix. Given the system matrices, with the unknown coefficients replaced by
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their ML estimates, the observation prediction errors from the Kalman filter are used to validate the

adequacy of the distribution assumption by examining diagnostic statistics based on standardized

prediction errors; see Section 4 and Table 1. Finally, we obtain the smoothed MMSE of αt, given

all observed data, with its MSE variance matrix using a Kalman filter smoothing method. Further

details of this estimation methodology are provided in Durbin and Koopman (2012, Ch. 4 and 7).

2.7 Model-implied dynamics of atmospheric concentrations

We study the dynamic properties of atmospheric concentrations in the linear model. To this end, we

ignore for a moment the dependence of the sinks on ENSO, of emissions on ECON, and all dummy

effects. This simplifies the derivations without changing the main conclusions drawn here. For

emissions, we introduce a constant drift d > 0, which can be thought of as the average annual increase

in emissions due to economic activity over the period 1959–2020. Thus, we let E∗t+1 = E∗t + d+XE
t ,

which implies that E∗t is the sum of the linear trend function E∗0 + d t and the stochastic process

XS
t =

∑t−1
j=0X

E
j , for t = 1, . . . , T . In the terminology adopted in the dynamic econometrics literature,

we have XS
t ∼ I(1), i.e. the process XS

t is non-stationary and integrated of order one. It implies

that the first difference XS
t+1 −XS

t = XE
t is a stationary process; see Hamilton (1994, p. 437) for a

textbook treatment. By inserting the equation for E∗t , (15), and (16) into the budget equation (1),

we can represent C∗t as a first-order autoregressive process,

C∗t+1 = C∗t + d+ E∗t +XE
t − βC∗t+1 − c1 − c2

= C∗t + c+ d t+XS
t +XE

t − βC∗t+1,

where c = d + E∗0 − c1 − c2 and β = (β1 + β2)/C1750. Note that while these derivations rely on the

linearity of the sinks, we can actually gain insights into their nonlinear behavior by assessing the

quality of the approximation, as we discuss below.

Re-arranging terms, we obtain (1+β)C∗t+1 = C∗t +c+d t+XS
t+1 and hence the first-order difference

equation

C∗t+1 = δC∗t + c∗ + d∗t+ δXS
t+1,
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where δ = (1 + β)−1, c∗ = δ c, and d∗ = δ d. Solving the difference equation yields

C∗t = δt
[
C0 −

c∗

1− δ
+

d∗

(1− δ)2

]
+

[
c∗

1− δ
− d∗

(1− δ)2

]
+

d∗

1− δ
t+

t−1∑
j=0

δj+1XS
t−j (18)

∼ o(1) +O(1) +O(t) + I(1) ∼ O(t) + I(1),

where for sequences at, bt, we write at ∼ o(bt) if at/bt → 0 as t→∞, and at ∼ O(bt) if at/bt → const

as t → ∞, where const is a finite constant. This solution of the difference equation for C∗t implies

that, in a model where sinks are assumed to depend linearly on concentrations and where emissions

are a random walk plus drift, the resulting level of atmospheric concentrations will be a linear time

trend plus an I(1) term. Since we model emissions E∗t as a random walk around a linear trend,

and atmospheric concentrations are accumulating the emissions, one might expect concentrations to

be I(2). However, there is no second unit root because the sinks in turn take up a fraction of the

emissions, which leads to atmospheric concentrations being O(t) + I(1).

This conclusion relies on the fact that the autoregressive coefficient δ satisfies |δ| < 1. In fact, if

δ = 1, the term
∑t−1

j=0 δ
j+1XS

t−j =
∑t−1

j=0X
S
t−j would be integrated of order two, that is, I(2) instead

of I(1). In our empirical study below, we find that δ ≈ 0.98. As atmospheric concentrations increase

and quadratic terms become important in a Taylor approximation of the nonlinear sink functions,

δ grows even closer to one, pushing the process even closer to a second unit root, and the “Keeling

curve” (Fig. 1 (a) below) will display more positive curvature. The discussion of the sink rate in

Section 5 below is related to this issue, since it shows that the capacity of the sinks to increase uptake

in response to an increase in concentrations is diminishing. In the supplementary material S5 we

discuss an impulse response function of atmospheric concentrations with respect to emissions based

on solution (18).

3 The data set

3.1 Global Carbon Budget data 1959–2020

Figure 1 displays the time series data set from the Global Carbon Project that we employ in our

study, both in levels and in first differences. The GCB time series are annual, observed from 1959

to 2020, measured in GtC per year, and obtained from the global file of Friedlingstein et al. (2022),

available at https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2021.

Panel [a] in Figure 1 presents atmospheric concentrations C (Dlugokencky and Tans, 2020), while
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Figure 1: GCB annual time series 1959 – 2020. C: Atmospheric CO2 concentrations, E FF: fossil fuel emissions,

E LUC: land-use change emissions, E: anthropogenic emissions (FF+LUC), S LND: land sink, S OCN: ocean sink.
(a) C (b) S LND (c) S OCN

(d) First differences C (e) First differences S LND (f) First differences S OCN

(g) E FF (h) E LUC (i) E

(j) First differences E FF (k) First differences E LUC (l) First differences E
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Panels [b] and [c] show the sinks. The time series of the land sink (S LND) is the mean of the outputs

of 17 different models (Haverd et al., 2018; Melton et al., 2020; Yuan et al., 2014; Lawrence et al.,

2019; Tian et al., 2015; Meiyappan et al., 2015; Delire et al., 2020; Mauritsen et al., 2019; Sellar

et al., 2019; Smith et al., 2014; Poulter et al., 2011; Lienert and Joos, 2018; Zaehle and Friend, 2010;

Vuichard et al., 2019; Walker et al., 2017; Kato et al., 2013; Yue and Unger, 2015), and that of the

ocean sink (S OCN) is the mean of the outputs of 8 different models (Schwinger et al., 2016; Berthet

et al., 2019; Hauck et al., 2020; Liao et al., 2020; Doney et al., 2009; Aumont et al., 2015; Wright et al.,

2021; Lacroix et al., 2021), which were constrained to surface partial pressure observations following

Landschützer et al. (2016); Rödenbeck et al. (2014); Denvil-Sommer et al. (2019); Gregor et al. (2019);

Watson et al. (2020); Zeng et al. (2014); Iida et al. (2021); Gregor and Gruber (2021). Panels [d]

through [f] contain the first differences of the series. The first difference of C, i.e. Ct−Ct−1, represents

changes in atmospheric concentrations (G ATM). Panel [g] shows fossil fuel emissions E FF, which

are calculated including cement carbonation from the global file (see Friedlingstein et al., 2020, p.

3277, for a discussion on how to include cement carbonation into the fossil fuel emissions time series).

Panel [h] shows land-use change emissions E LUC, which are the average of three series prepared by

Houghton and Nassikas (2017), Hansis et al. (2015), and Gasser et al. (2020). Panel [i] shows the

sum of E FF and E LUC, labeled anthropogenic emissions E. Panels [j] through [l] show the first

differences of the variables immediately above.

As is clear from Figure 1, the most conspicuous dynamic property of the GCB data series over

the period 1959–2020 is that they are trending upwards. An exception is E LUC, which has been

hovering around a constant value for most of the period, with a downward trend since 2016. To

shed some light on the statistical properties of the data series, we have run a battery of tests for

stationarity and unit roots of these variables; the results are discussed in the supplementary material

S6.

3.2 Explanatory variables

Figure 2 displays the time series that act as explanatory variables. The ECON variable is taken as

the logarithm of gross domestic product world-wide (World GDP) in constant 2015 Dollars, which is

obtained from World Bank (2021) (Series ID NY.GDP.MKTP.KD). The year-to-year log-differences

of World GDP are also displayed, as we will adopt the growth rate in World GDP (∆ECON) as

an explanatory variable for changes in emissions. The ENSO variable is taken as the Southern

Oscillation Index (SOI), and it is obtained from Climatic Research Unit (2021); Ropelewski and
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Jones (1987). The SOI is defined as the studentized measure of differences in atmospheric pressure

at sea level between Tahiti and Darwin, Australia. Positive (negative) values correspond to La Niña

(El Niño) phases. We employ SOI as the ENSO explanatory variable for the sink processes. We have

also experimented with versions of our model with Niño 3.4 and Oceanic Niño Indices: the resulting

estimation results have been very similar. The likely reason for the similar estimation outcomes

is that our analysis is based on annual time series and these indices are very similar at the yearly

sampling frequency.

Figure 2: Explanatory variables 1959 – 2020. World Gross Domestic Product (GDP, constant 2015 USD), in

levels and in first log-differences, and the Southern Oscillation Index (SOI)

(a) World GDP (b) World GDP log-differences (c) Southern Oscillation Index

4 Maximum likelihood estimation and residual diagnostics

In this section, we present the maximum likelihood estimates of the parameters in our GCB model

as proposed in Section 2.6, using the GCB data set as presented in Section 3. First, we discuss the

estimation results for the nonlinear model of Section 2.6. Although we specify the sink coefficients

β1,t and β2,t as time-varying, we find that they are estimated to be constant over time on the sample.

This provides justification of the linear model of Section 2.6. We estimate this model and present

and discuss the goodness-of-fit and the residual diagnostics.

A simulation study examining the performance of our estimation procedure when applied to

both the nonlinear and the linear specifications can be found in the supplementary material S1

and S7, respectively. There we find that the time-varying parameter approach to accommodate

the nonlinearity of the general GCB model can capture various nonlinear dependencies in the sink-

concentrations relationship, if they are present. We further find good finite sample properties of the

estimation procedure as applied to the linear model.
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4.1 Estimation results for nonlinear model

We specify the time-varying parameters in equations (6), (7), and (8) as independent random walk

processes. Thus, we have βi,t+1 = βi,t + ωi,t, for i = 1, 2, 5, and t = 1, . . . , T , where ωi,t is an

independently and identically distributed random innovation variable with mean zero and variance

σ2
βi
> 0, and it is mutually independent from all other innovations in the model, for i = 1, 2, 5. We

note that when one (or several) of these variances σ2
βi
> 0, i = 1, 2, 5, is estimated as zero, the

corresponding time-varying coefficient reduces to a constant. In the cases of β1,t and β2,t in the sinks

equations, constancy or time-variation determines the linearity or nonlinearity of the model.

The nonlinearity of this setup obtains because the time-varying variables β1,t and β2,t are multi-

plied by the dynamic stochastic state variable C∗t . Hence, we cannot treat this system directly via the

Kalman filter and smoother methods, which are valid only for linear state space systems. Instead,

we address this multiplicativity by means of the Extended Kalman filter and smoother (EKF); see

(Durbin and Koopman, 2012, pp. 226–237). Maximum likelihood estimation and residual diagnostic

checking are not affected, as long as the EKF is used for filtering and smoothing. In contrast, in

equation (8), β5,t is multiplied by ECONt, which is not a state process and therefore does not entail

nonlinearity.

We estimate the parameters of the resulting model using maximum likelihood, with the log-

likelihood function evaluated by the EKF. The variances σ2
β1

, σ2
β2

, and σ2
β5

are estimated to be

effectively zero, at 1e-10 (2.4e-10), 7e-10 (3e-7), and 2e-6 (5e-4), respectively, where the numbers in

parentheses are standard errors. On the GCB data 1959-2020, the linearity assumption is therefore

still accurate enough for statistical purposes.

The estimates of the remaining parameters are very close to those from the linear specification

presented in the next section. The residual diagnostics and the smoothed estimates of the state vector

are also very similar to those of the linear model. The full set of results for the nonlinear specification,

together with plots of the smoothed processes for the time-varying coefficients, is reported in the

supplementary material S8.

These results show that the linear model specification is appropriate for the sample period studied

here. It should be stressed that the relatively short sample of yearly observations from 1959 to 2020

(62 observations) and the range of atmospheric concentrations observed during the sample period

can make it challenging to empirically establish nonlinear sinks effects.
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4.2 Parameter estimation for the linear multivariate dynamic model

The state space representation of the linear dynamic model is provided in detail in Section 2.6. This

representation facilitates the estimation of the parameters in the model by maximum likelihood using

linear Gaussian state space methods as discussed in, for example, Durbin and Koopman (2012). The

state vector contains the dynamic (stationary and non-stationary) features of the model and the

linear regression effects. The stationary elements of the state vector (XE
t and Xi,t for i = 1, . . . , 4)

are initialized based on corresponding unconditional moments while the non-stationary elements

are subject to diffuse initial conditions. The state equation disturbance vector is given by ηt =

(η1,t, . . . , η4,t, κt)
′ where ηi,t corresponds to the disturbance in the autoregressive processes Xi,t, for

i = 1, . . . , 4, while κt is the disturbance in the autoregressive processXE
t . Letting rij = Corr(ηi,t, ηj,t),

we assume that rij = 0 for all i 6= j, except for r12 (correlation between residual innovations in C

and S LND) and r13 (correlation between residual innovations in C and S OCN). We experimented

with non-zero values for other correlations rij, but this resulted in estimates that were close to zero

and insignificant. Initial analyses show that we can set the measurement error for E in (12) to zero,

that is X4,t = 0 and hence φ4 = σ2
η4

= 0. Further, the measurement error for the land sink X2,t does

not show any evidence of serial correlation, and hence we set φ2 = 0.

The resulting 12× 1 parameter vector ψ is given by

ψ = (β1, β2, φ1, φ3, φE, σ
2
η1
, σ2

η2
, σ2

η3
, σ2

κ, r12, r13, sE)′.

The estimation of ψ is based on maximizing the log-likelihood function that is evaluated by an

augmented Kalman filter in order to account for the diffuse initial conditions in the state vector

(Durbin and Koopman, 2012, p. 173). The remaining coefficients c1, c2 and βj, j = 3, . . . , 8, are

added to the state vector. These coefficients are incorporated in the state space framework by treating

them as states with transition equation, e.g., c1,t+1 = c1,t without error, rendering them constant

states. In effect, this approach concentrates these coefficients out of the likelihood.

Table 1 displays the estimated parameter values and their standard errors. Figure 3 presents the

smoothed states, together with the time series data of C, G ATM , E, S LND and S OCN . The

coefficients pertaining to SOI in the sinks processes are highly significant. They are of opposite sign:

La Niña phases (positive SOI) correspond to higher land uptake whereas they correspond to lower

ocean uptake. This aligns with expectations from physical considerations, see, for example, Feely

et al. (1999) and Haverd et al. (2018). The increase in variance of κt in 1996, captured by (ŝE)2 =
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Figure 3: Smoothed estimates for state vector elements: C∗t atmospheric concentrations, X1,t error process for
Ct, G ATM∗t first differences of C∗t , S LNS∗t land sink, X2,t deviations process for S LNDt, S OCN∗t ocean sink,
X3,t deviations process for S OCNt, E

∗
t emissions, XE

t innovations process that is cumulated in E∗t .

(a) C∗t (b) X1,t (c) G ATM∗t = C∗t+1 − C∗t

(d) S LND∗t (e) X2,t (f) S OCN∗t

(g) X3,t (h) E∗t (i) XE,t
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Table 1: Parameter estimation results

The statistical GCB model is for yt = (C, S LND,S OCN,E)′t and is discussed in Section 2. The parameter estimates

are provided with their asymptotic standard errors in parantheses below. The “linear” parameters are placed in

the state vector, and they are effectively concentrated out from the likelihood function: their estimates and the

corresponding standard errors (in brackets, below the estimates) are computed by the Kalman filter recursions. The

“other” and “variance” parameters are placed in the parameter vector; its estimate and the corresponding asymptotic

standard errors are obtained from numerically maximizing the log-likelihood function.The residual diagnostics are for

the standardized prediction residuals for the four variables in yt, obtained from the Kalman filter. We report sample

statistics together with the Jarque-Bera test for normality, the Ljung-Box (1 lag), and the Durbin-Watson statistics

for first-order autocorrelation.

Parameter estimates

Linear parameters Other parameters Variance parameters
c1 -4.13 β1 4.98 σ2

η1 0.62
(0.04) (0.45) (0.12)

c2 -5.11 β2 5.44 σ2
η2 0.42

(0.03) (0.30) (0.08)
β3 0.58 φ1 0.75 σ2

η3 0.008
(0.10) (0.10) (0.001)

β4 -0.06 φ3 0.68 σ2
κ 0.009

(0.02) (0.10) (0.002)
β5 2.89 φE 0.29 r12 -0.58

(0.50) (0.14) (0.09)
β6 0.41 r13 0.03

(0.08) (0.11)
β7 -2.49 sE 2.24

(0.66) (0.44)
β8 -0.21

(0.09)

Residual Diagnostics

C E S LND S OCN
mean -0.014 0.040 0.071 0.099
standard deviation 0.995 0.979 0.991 0.944
skewness 0.070 0.150 0.030 0.070
kurtosis 2.731 3.558 2.607 3.321
Ljung-Box 0.000 0.099 0.198 0.015
Jarque-Bera 0.237 1.035 0.409 0.316
Durbin-Watson 1.976 1.914 2.095 2.025

2.242, is highly significant and more than quadruples the pre-1996 variance (see supplementary

material S2). The dummy variables are all of the expected sign. Figure 3 indicates that the inclusion

of SOI in the sinks makes them dynamic, tracing the data better than a simple linear function of C∗

would be able to.

The coefficient pertaining to ∆ECONt is highly significant, β̂5 = 2.89 (0.50), indicating that

World GDP growth plays an important role in determining changes in emissions. To further inves-
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tigate the effect of including/excluding logarithmic GDP in the model, we also considered a version

of the model where we add a constant drift d to the equation for E∗, that is

E∗t+1 = E∗t + d+ β5∆ logGDPt+1 + β8I1991 +XE
t .

From this specification, we obtain the insignificant estimate d̂ = −0.027 (0.043) for the constant d

and a significant estimate β̂5 = 3.480 (1.038) for the growth rate of World GDP. We can conclude

that the data clearly prefer the time-varying drift β5∆ logGDPt+1 over the constant drift d, in the

random walk for E.

The residual diagnostics presented in Table 1 do not reveal evidence of non-normality remaining in

the standardized prediction residuals, nor evidence of serial correlation. Hence, we can conclude that

the model under consideration provides a good statistical description of the data. If the standardized

prediction residuals are statistically indistinguishable from white noise, as the residual diagnostics

show, additional terms in the model will not be able to substantially improve on the fit of the model

to the data. Even though we know some of the residual variation to be physically meaningful, for

example in the sinks data, since they were generated by (and averaged over) different GCMs, from

a statistical point of view, and on the data set we consider, it is sufficient to describe the sinks as

linear functions of atmospheric concentrations and SOI. Similarly, it is sufficient to describe changes

in emissions as a linear function of World GDP growth, and it is sufficient to describe changes in

atmospheric concentrations by the carbon budget equation (plus the various dummies that we include

in the model).

Canadell et al. (2021) report on p. 691 that the ocean sink evaluated from global ocean bio-

geochemical models grew from 1.0 ± 0.3 GtC per year in 1960-1969 to 2.5 ± 0.3 GtC per year in

2010-2019. Average atmospheric concentrations in the 1960s were 681 GtC and in the 2010s 850 GtC.

This implies a rough estimate of β2 at (2.5± 0.3− 1.0± 0.3)/(850− 681) = 5.27 with an uncertainty

range of [3.05, 7.48], if we ignore uncertainty in the measurement of atmospheric concentrations. On

p. 694, they report that over the same period, the land sink increased from 0.3±0.6 GtC to 1.8±0.8

GtC. In the same fashion, we arrive at a rough estimate of β1 of 5.27 with an uncertainty range of

[0.35, 10.18]. Gloor et al. (2010) report estimates of the reciprocals of these coefficients, implying

slightly higher values at β1 = 7.29 and β1 = 8.54. The difference in the estimates presented in

Gloor et al. (2010) to those of Table 1 and the ones implied in Canadell et al. (2021) are likely due

to the longer sample of data available now, as well as improvements in the data series themselves,

stemming from recent developments in the construction of historical sinks time series using GCMs
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and in reconstructing historical estimates of CO2 emissions (Friedlingstein et al., 2022).

The estimate of φ̂3 = 0.68(0.10) reflects a predictability in the ocean sink that has been discussed

in the large-scale model literature (Sabine et al., 2004; McKinley et al., 2017). It likely reflects

internal variability driven by the Southern Annular Mode, the Pacific Decadal Oscillation, and the

North Atlantic Oscillation, see (McKinley et al., 2017, p. 127).

The supplementary material S9 presents a validation exercise, where we estimate the model on

the subsample 1959–2010. Given observations on SOI and on World GDP for the validation sample

2011–2020, we compute the imputed values for the four variables of the model on this validation

sample and compare them to the actual outcome. This exercise also illustrates that the model

describes the data well.

5 A statistical analysis of the Global Carbon Budget

In this section we provide various illustrations of a statistical analysis of the Global Carbon Budget

based on the multivariate dynamic statistical framework. We start with the statistical forecasting

of the variables in the GCB. Furthermore, we show that other key measures, such as the budget

imbalance, the airborne fraction, and the sink rate, can be extracted and analyzed using our statistical

framework.

5.1 Forecasting

Recently, there has been a focus on forecasting the global carbon cycle at short horizons of a few

years (Li and Ilyina, 2018; Séférian et al., 2018; Lovenduski et al., 2019b,a; Spring and Ilyina, 2020).

These efforts have been based on Earth System modeling. Li et al. (2022) connect this approach with

the Global Carbon Budget data set in order to arrive at predictions of observational data. Betts

et al. (2016) and Betts et al. (2018) propose a statistical forecast model for ∆C as a function of

emissions and ENSO3.4 sea-surface temperature anomalies.

We approach the forecasting problem with the statistical GCB model, which allows us to forecast

all four components (C, E, S LND, S OCN) simultaneously subject to the global carbon budget

equation. First differences G ATM = ∆C are automatically included. Given the data sample from

1959 to 2020, we forecast the years 2021 to 2023.

Forecasting the model necessitates forecasts for World GDP growth and for the SOI for these

years. We employ the GDP growth rate of 6.1% for 2021 and projections 3.2% and 2.9% for 2022
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and 2023, respectively, from the IMF World Economic Outlook July 2022 (IMF, 2022).

Figure 4: Forecasts for C, G ATM , E, S LND, and S OCN with 90% pointwise confidence intervals. The
model employs forecasts of SOI generated from a separate model (see supplementary material S10) and of World GDP
growth from the IMF. The full model (with forecasts in blue and pointwise confidence intervals in light blue shade)
is specified in Section 2. The simplified model (with forecasts in dark grey and pointwise confidence intervals in light
gray shade) does not feature SOI in the sinks nor World GDP in emissions. For 2021 and for C and G ATM , a
forecast of a model inspired by Betts et al. (2018) is shown for comparison (with confidence interval, black vertical
lines in panels (a) for C and (b) for G ATM); for E, S LND, and S OCN , the forecast of the Global Carbon Project
is shown for comparison (without confidence interval).

(a) C (b) G ATM (c) E

(d) S LND (e) S OCN

The forecasts of monthly SOI are based on a historical data set obtained from the Climatic

Research Unit (2021) and from Ropelewski and Jones (1987). The model-based monthly forecasts

from September 2021 to December 2023 are obtained from a structural time series model with a level

component, a monthly seasonal component, a second-order stochastic cycle (with the cycle-period

being estimated close to 4 years), and a first-order autoregressive component; see Harvey (1989) for

a textbook treatment. A similar model is adopted in Petrova et al. (2017). Further details of the

data, the time series model, and the estimation results are presented in the supplementary material

S10. The SOI is predicted to switch from a La-Niña period (positive numbers) in 2021 and 2022 to

an El-Niño period (negative numbers) in 2023.

Due to the COVID pandemic, we are in a forecasting situation where there is an outlier at the
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end of the sample. In future updates of the model, a dummy in the emissions equation will likely

have to be added for this event. At this point in time, such a dummy makes no substantial difference

for the parameter estimates, but the forecasts are affected. In particular, there is little value in a

forecast that uses the unusually low 2020 emissions as the best forecast for 2021. Therefore, only for

the purposes of this forecast exercise, we do not use the 2020 observation for emissions but repeat the

2019 observation instead, so that the 2021 forecast (and subsequent ones) are based on pre-pandemic

emission levels. This effectively dummies the COVID year 2020 out for the forecast.

Figure 4 presents the forecasts of the GCB variables together with estimates of the forecast un-

certainty by means of the 90% point-wise confidence bands (blue, and light blue shades for pointwise

confidence intervals). As a benchmark, we also show the forecasts from a simplified version of the

model that does not contain SOI in the sinks, World-GDP in emissions, or any dummy variables

(black, and gray shades for pointwise confidence intervals).

The Global Carbon Project provides projections of the GCB variables for one year following the

current vintage. These are not forecasts proper for all variables, more recent information about the

variables enters. For increases in atmospheric concentrations, for example, actual observations are

used (Friedlingstein et al., 2022, p. 1941). For the sinks, these are proper forecasts from a neural

network prediction. The projections for 2021 are: E2021 = 10.7 GtC (our forecast: 11.04 ± 0.35),

G ATM2021 = 5.3GtC (our forecast: 4.47±0.37 GtC), S OCN2021 = 2.9 GtC (our forecast: 3.0±0.18

GtC), S LND2021 = 3.3 GtC (our forecast: 3.62± 1.30 GtC). Note that the Global Carbon Project

thus projects a budget imbalance of −0.80 GtC, whereas in our model, the forecast of the budget

imbalance is −0.04. For C and G ATM , we compare with the available observation for 2021 and

with the interval forecast from the model of Betts et al. (2016, 2018), equipped with our own forecast

for E2021. The Betts et al. forecast can only be performed for one year ahead, unless one produces

forecasts of E and the ENSO SST anomaly for several years ahead. For the sinks forecasts, the

current La-Niña phase (positive SOI index numbers) in the full model leads to higher predicted land

sink activity in 2021 (β3 > 0) and to lower ocean sink activity (β4 < 0) in 2021 compared to the base

model. This results in a forecast for G ATM from the full model that is lower than that from the

base model, despite the high world-GDP growth rate in 2021.

5.2 Budget Imbalance

Friedlingstein et al. (2022) define and discuss the budget imbalance (BIM), which is the residual of

the GCB equation. The budget imbalance can be used to assess whether the different GCB data
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sources are internally consistent. It has also been suggested recently that it may be used to detect

potential misreportings of future global CO2 emissions (Peters et al., 2017; Bennedsen, 2021). Hence,

the accurate modeling and prediction of the budget imbalance is an important endeavour. In our

model, the BIM variable is defined as BIM∗ = E∗ − G ATM∗ − S LND∗ − S OCN∗ = 0 with

corresponding measurement

BIMt = Et −∆Ct − S LNDt − S OCNt

= E∗t −G ATM∗
t − S LND∗t − S OCN∗t + β6I1997− β7I1991− (X1,t −X1,t−1)−X2,t −X3,t

= β6I1997− β7I1991−∆X1,t −X2,t −X3,t.

Hence, the BIM observation variable implied by the model is a stationary process and two outlier

dummies. Panel (a) in Figure 5 presents the smoothed estimates of BIMt together with its data

counterpart. The perfect overlap shows that the system of model equations is internally consistent.

Figure 5: Budget imbalance BIM, smoothed values, one-year ahead predictions, and components

(a) Smoothed −(∆X1 + X2 + X3) +
β6I1997− β7I1991 (b) One-year ahead predictions (c) Components −∆X1, −X2, −X3

Panel (b) in Figure 5 presents the one-year ahead predictions for BIM obtained from the in-sample

one-year ahead predictions of ∆X1,t +X2,t +X3,t, together with 90% pointwise confidence intervals.

The individual predictions for −∆X1,t, −X2,t, and −X3,t are presented in Panel (c) of Figure 5.

We learn that most of the variation originates from −∆X1,t, the measurements error process in

atmospheric concentrations, and −X2,t, the approximation error process in the land sink. A variance

decomposition reveals that they jointly contribute 97% (75% and 22%, respectively).
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5.3 Airborne fraction and sink rate

The airborne fraction is defined as

AF =
G ATM

E
,

and is the part of emissions that remains in the atmosphere. On the sample, this fraction is on

average 0.44, but it shows substantial variation in the data. The sink rate

SR =
S LND + S OCN

C
,

is a measure of the capacity of the sinks to absorb atmospheric CO2. Figure 6 presents the airborne

fraction in panel (a) and the sink rate in panel (b). Whether or not the airborne fraction is increasing

and/or the sink rate is decreasing has been the subject of much debate in the last fifteen years

(Canadell et al., 2007a; Raupach et al., 2008; Knorr, 2009; Le Quéré et al., 2009; Gloor et al., 2010;

Raupach et al., 2014; Rayner et al., 2015; Ballantyne et al., 2015; Bennedsen et al., 2019).

Figure 6: Airborne fraction and sink rate, smoothed estimates from the model and a simplified version that
excludes SOI from the sinks and World GDP from emissions, with the corresponding observations for comparison

(a) Airborne fraction (b) Sink rate

Figure 6 shows, however, that by calculating AF ∗ and SR∗, the versions of the ratios with state

processes in the numerators and denominators, we obtain new estimates of these variables that focus

on a few key relations of the sinks, and thus they show much less variation. Raupach et al. (2014)

and Bennedsen et al. (2019) show that there is no evidence of an increase in the airborne fraction,

but that there is evidence of a decline in the sink rate. In Figure 6 this can be seen with the naked
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eye, in particular for the results from the simplified benchmark model without SOI in the sinks,

which specifies the sink processes just as affine transformations of atmospheric concentrations. The

figure also shows confidence intervals obtained from simulation smoothing (Durbin and Koopman,

2002). Note that these confidence intervals are not relative to the data but should be interpreted as

follows. If we were given a large number of trajectories sampled from the models, and if we were to

extract the smoothed state variables and compute the airborne fraction and the sink rate from these

trajectories, the confidence bands will cover these imputed variables point-wise 90% of the time.

6 Conclusions and directions for further research

We have proposed a multivariate dynamic statistical model for the global carbon budget, consisting

of the time series variables: atmospheric CO2 concentrations, anthropogenic CO2 emissions, and land

and ocean CO2 uptake (sinks). The cornerstone of the model is the budget equation, which ensures

that the fraction of emissions that is not absorbed by the terrestrial biosphere or the ocean constitutes

an annual flow to the stock of atmospheric concentrations. We discussed the central assumptions of

random walk with drift dynamics dependent on economic activity for anthropogenic emissions and

nonlinear and linear dependence of sinks on atmospheric concentrations. The model equations allow

for a closed-form solution for atmospheric concentrations; they reveal stochastic integration of order

one with a second near-unit root for concentrations. The dynamics of atmospheric concentrations

approach a second unit root as sinks uptake degrades.

We presented a comprehensive statistical analysis of the global carbon budget data set, as pro-

vided by the Global Carbon Project, including model parameter estimates, residual diagnostics, and

smoothed estimates of the model variables. Based on our multivariate dynamic statistical model,

we produced forecasts for all GCB variables in the years 2021, 2022, and 2023, we discussed the

airborne fraction and sink rate estimates, and we decomposed the variation in the budget imbalance

into contributions from concentrations, land sink, and ocean sink.

We plan several directions for extending the work on our multivariate dynamic statistical model.

For example, it is conceptually straightforward to include individual ensemble members rather than

the averages of them for S LND and S OCN . The model structure is also conducive for increasing

the resolution on the macroeconomic sphere. For example, we can replace World GDP in emissions

by factors obtained from large macroeconomic data sets. The mechanics of the global carbon cycle

can be extended to include elements of widely used small-scale climate models. Finally, an interesting

extension is to incorporate energy balance modules in our multivariate dynamic model in order to
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provide a modeling connection to global temperatures.
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Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C., Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T.,
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Le Quéré, C., Raupach, M., Canadell, J., Marland, G., Bopp, L., Ciais, P., Conway, T., Doney, S., Feely, R., Foster,

P., Friedlingstein, P., Gurney, K., Houghton, R., House, J., Huntingford, C., Levy, P., Lomas, M., Majkut, J.,

Metzl, N., Ometto, J., Peters, G., Prentice, I., Randerson, J., Running, S., Sarmiento, J., Schuster, U., Sitch, S.,

Takahashi, T., Viovy, N., van der Werf, G., and Woodward, F. (2009). Trends in the sources and sinks of carbon

dioxide. Nature Geoscience, 2:831 – 836.
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Rödenbeck, C., Bakker, D., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R., and Heimann, M.

(2014). Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeo-

sciences, 11:4599–4613.

Ropelewski, C. and Jones, P. (1987). An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather

Review, 115:2161–2165.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace,

D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F. (2004). The Oceanic Sink

for Anthropogenic CO2. Science, 305(5682):367–371.

Schwinger, J., Goris, N., Tjiputra, J., Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K., and Heinze, C.

(2016). Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the

Norwegian Earth System Model (NorESM1). Geoscientific Model Development, 9:2589–2622.
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