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Abstract

We propose a multiplicative dynamic factor structure for the conditional modelling of
the variances of an N -dimensional vector of financial returns. We identify common and
idiosyncratic conditional volatility factors. The econometric framework is based on an
observation-driven time series model that is simple and parsimonious. The common
factor is modeled by a normal density and is robust to fat-tailed returns as it averages
information over the cross-section of the observed N -dimensional vector of returns. The
idiosyncratic factors are designed to capture the erratic shocks in returns and therefore
rely on fat-tailed densities. Our model is potentially of a high-dimension, is parsimonious
and it does not necessarily suffer from the curse of dimensionality. The relatively simple
structure of the model leads to simple computations for the estimation of parameters and
signal extraction of factors. We derive the stochastic properties of our proposed dynamic
factor model, including bounded moments, stationarity, ergodicity, and filter invertibility.
We further establish consistency and asymptotic normality of the maximum likelihood
estimator. The finite sample properties of the estimator and the reliability of our method
to track the common conditional volatility factor are investigated by means of a Monte
Carlo study. Finally, we illustrate our approach with two empirical studies. The first
study is for a panel of financial returns from ten stocks of the S&P100. The second study
is for the panel of returns from all S&P100 stocks.
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1 Introduction

Many different approaches for the econometric and statistical analysis of multiple time series exist.

Multivariate extensions of autoregressive models and other linear dynamic models are well established.

In case the dimension of the vector of observations for each time period increases, we encounter the

curse of dimensionality problem which refers to the corresponding exponential increase in the number

of parameters. To alleviate this dimension problem, rank-reduction techniques have been considered,

including principal components and dynamic factor methods. Such approaches are widely adopted in

empirical studies in macroeconomics, finance and macro-finance; see, for example, Forni et al. (2000),

Stock and Watson (2002, 2012) and Doz et al. (2011). In these studies, the rank-reduction methods

are applied to linear dynamic model structures and for modeling the location or mean function of the

observed time series vector. In this study, we will focus on the dynamic modeling of the scale or variance

function of the observation vector by means of parsimonious model specifications. In particular, we

jointly analyse conditional variances within a vector of financial returns.

In empirical financial studies, conditional volatility in a time series of financial returns is usually

analyzed by the generalized autoregressive conditional heteroskedasticity (GARCH) model as proposed

in the seminal work of Engle (1982) and Bollerslev (1986). Given the presence of cross-sectional

dependence and common features in financial returns, it is widely acknowledged that it is useful to

analyze mutiple time series of financial returns jointly within a multivariate model. For example, the

first multivariate extension of the GARCH model has been proposed by Bollerslev et al. (1988) and

is known as the (D)VECH-GARCH model. This is a typical example of a multivariate extension that

suffers from the curse of dimensionality. Another multivariate extension of the GARCH model is known

as the BEKK-GARCH model and is proposed by Engle and Kroner (1995). While the scalar BEKK

specification is a parsimonious formulation of a multivariate GARCH model, it is also a rather restrictive

setting in which the dynamic properties of all variances and covariances are the same. More general
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specifications of the VECH- and BEKK-GARCH models suffer from infeasible estimation methods

due to the exponetially increasing number of parameters and the intractable number of time-varying

conditional variances and covariances that need to be analyzed. When the focus is more concerned

with time-varying conditional correlations between time series of financial returns, a parsimonious and

practical approach is offered by the dynamic conditional correlation (DCC) model of Engle (2002). The

DCC offers only a disjoint analysis of variances and correlations. In any case, all multivariate extensions

of the GARCH model have enjoyed much popularity due to their ability to capture covariance spillovers

and feedbacks such that key interactions between financial returns can be uncovered. A complete review

of multivariate GARCH models is provided by Bauwens et al. (2006).

Despite the advance of computing power and efficient estimation methods, an analysis based on the

multivariate GARCH model is still regarded as involved due to its curse of dimensionality. To counter

this dimension problem for multivariate GARCH models, the aforementioned reduced rank methods

have been considered in this context. The factor GARCH model is originally proposed by Engle et al.

(1990) and it has proven to be a popular method as it reduces the dimension problem substantially.

This approach has been developed further by Alexander (2001) and van der Weide (2002) with their

respective orthogonal GARCH (O-GARCH) model and its generalized version, the GO-GARCH model.

In our proposed dynamic conditional variance factor model, the variances of a high-dimensional

time series vector of financial returns are decomposed into common and idiosyncratic factors. It allows

for an insightful and parsimonious way of simultaneously analyzing dependence structures in a time

series panel of financial returns. The common factor in the model should naturally be robust to fat-

tailed innovations due to averaging of information over the cross-section. The idiosyncratic factors are

typically sensitive to particular events and outliers and should be represented by fat-tailed innovations.

In this paper, we propose a multiplicative dynamic conditional variance factor model with a robust

updating equation for the idiosyncratic factors.

Our model can be regarded as a multiplicative version of the one-factor (or index) multivariate
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time series models which are developed by Engle and Watson (1981) and Gonzalo and Granger (1995),

amongst others. However, in adopting the terminology of Cox (1981), we propose an observation-driven

dynamic specification for the factors. In this class of dynamic models, we have the main advantage that

the predictive likelihood is available in closed-form. Hence, parameter estimation can be carried out

using standard likelihood-based methods, even when we drop the Gaussian assumption and introduce

nonlinearities in the model. In particular, relying on a simple system of non-linear recursions, our

model decomposes the conditional variance of each series of daily returns into the product of common

and idiosyncratic components.

Our proposed model can further be regarded as an extension of the volatility component models

introduced by Engle and Lee (1999) and further explored by Engle and Rangel (2008), Amado and

Teräsvirta (2013) and the multivariate extension of Hafner and Linton (2010), where the aforementioned

one-factor multivariate time series model approach is considered within the volatility context. Even

though this approach has shown to be a powerful tool for capturing complex volatility structures and

dynamics, a comprehensive statistical and probabilistic analysis of the multiplicative component models

has not been available until the recent work of Wang and Ghysels (2015).

In a different context, Barigozzi et al. (2014) propose a vector multiplicative error model for the

identification of common and idiosyncratic dynamic factors in the time series. The common trend factor

is extract using a Nadaraya-Watson estimator, while idiosyncratic factors are individually modeled as

scalar and asymmetric GARCH processes in a parametric setting. Hence, a semi-nonparametric analysis

is developed. In contrast, we develop a fully parametric framework by specifying a simple univariate

GARCH filter for the common factor and we formulate a robust score-driven filter for the idiosyncratic

factors based on the Student’s t distribution; see the discussions in Creal et al. (2013) and Harvey (2013).

The remainder of the paper is organized as follows. Section 2 introduces our dynamic conditional

variance factor model. Section 3 studies its stochastic properties. Section 4 establishes the asymptotic

properties of the maximum likelihood estimator (MLE). Section 5 presents a Monte Carlo study in
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which we analyze the small sample properties of the MLE and the accuracy of our method in extracting

the common conditional volatility factor. Section 6 provides two empirical illustrations using a panel of

10 stocks from the S&P100 and a panel of all S&P100 stocks. Section 7 concludes.

2 Dynamic Conditional Variance Factor Model

Let xt = (x1t, . . . , xNt)
> ∈ RN denote an N -dimensional vector of stock returns at time t and let

Ft−1 = F{xt−1,xt−2, . . . } be the sigma-field generated by the past values of xt. For each asset

i = 1, . . . , N , we consider a volatility model, in which the time-varying conditional variance is defined

as the product of a dynamic common factor {f2t }t∈Z, which captures the commonalities between assets,

and an idiosyncratic volatility process of the considered asset, {σ2
it}t∈Z. The model for the stock return

of each individual asset i is given by the equation

xit = ftσitεit, (1)

where {εit}t∈Z for i = 1, . . . , N , is an independent and identically distributed (IID) sequence of ran-

dom variables. The dynamic specifications of the common factor variable ft and each idiosyncratic

factor σ2
it are specified as autoregressive processes with innovations that are resulting from the score of

the conditional predictive density as a function of past observations. In case of the i-th idiosyncratic

variance, for i = 1, . . . , N , we have the following updating recursion

σ2
i,t+1 = δi + φiσ

2
it + κisit,

where δi > 0 is a scalar intercept, 0 < φi < 1 is an autoregressive coefficient, and κi > 0 is the weight

coefficient for the score function sit, for t = 1, . . . , T . For the class of score-driven models introduced

by Creal et al. (2013), the score sit is defined as the conditional scaled score of the predictive log-density.

In particular, we consider the scaled observations {xit/ft}t∈Z, such that we have

sit = Sit∇it(σit), ∇it(σit) =
∂ log p(xit/ft|σ2

it, δi, φi, κi)

∂σ2
it

,
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where ∇it(σit) is the conditional score and Sit is the scaling for the score. Common choices for the

latter component are the unit scaling, that is Sit = 1, the square root of inverse of the Fisher information

scaling, that is Sit = I(σit)
−1/2, and the inverse of the Fisher information scaling, Sit = I(σit)

−1,

where

I(σ2
it) = −E

[
∂2 log p(xit/ft|σ2

it, δi, φi, κi)

(∂σ2
it)

2

]
.

For a more detailed discussion we refer to Creal et al. (2013) and Harvey (2013). We further assume

that the IID sequence {εit}t∈Z for i = 1, . . . , N in model (1), follows a standard Student’s t distribution

with νi degrees of freedom, zero mean and unit scale, that is

εit ∼ tνi(0, 1),

for i = 1, . . . , N . The specifications for each of the i-th idiosyncratic sequence {σit}t∈Z is then com-

pleted. It follows that the idiosyncratic sequences are positive conditionally predictable processes that

evolve as a first-order Beta-t-GARCH, see Harvey (2013). An updating specification for the common

factor can be obtained in a similar way.

In our current study, we propose the following updating equations for the common factor f2t and the

idiosyncratic factor σ2
i , for i = 1, . . . , N ,

f2t+1 = ω + α

(
1

N

N∑
i=1

x2it − f2t
)

+ βf2t , (2)

σ2
i,t+1 = δi + φiσ

2
it + κiσ

2
it

[
(νi + 1)(x2it/f

2
t )

(νi − 2)σ2
it + (x2it/f

2
t )
− 1

]
, (3)

where ω > 0 is a scalar intercept, 0 < β < 1 is an autoregressive coefficient and α > 0 is a scaling

parameter. The updating equation (2) is simply based on the common prediction error, defined as

the difference between the cross-sectional sample variance 1
N

∑N
i=1 x

2
it and the common factor f2t .

The updating equation (3) for the idiosyncratic factor σ2
it is based on the score-driven mechanism as

described above. Our dynamic conditional variance factor model is defined by (1), (2) and (3).
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Assumption 1 below imposes constraints which ensure the positivity of the common conditional

volatility f2t+1.

Assumption 1. The dynamic parameters of the recursion (2) satisfy ω > 0, α ≥ 0, β ≥ 0, β − α ≥ 0.

Analogously, with Assumption 2, we give the positivity constraints for the static parameters in (3).

For identification purposes, we need to fix the unknown intercepts as δi = (1 − φi) for i = 1, . . . , N ,

in order to ensure that the unconditional mean of the idiosyncratic conditional volatility in (3) is one.

Clearly, the requirement mini=1,...,N νi > 2 is a necessary condition that comes from the distributional

assumptions.

Assumption 2. The dynamic parameters of the recursion (3) satisfy δi = (1− φi) > 0, κi ≥ 0, φi ≥ 0

and φi − κi ≥ 0, for i = 1, . . . , N . Moreover, we have mini=1,...,N νi > 2.

We can represent our dynamic conditional variance factor model as a set of filtering equations, that

is

xit = ftσitεit,

f2t+1 = ω + α
1

N

N∑
i=1

x2it + (β − α)f2t , (4)

σ2
i,t+1 = δi +

[
(φi − κi) + κi

(νi + 1)(x2it/f
2
t )

(νi − 2)σ2
it + (x2it/f

2
t )

]
σ2
it.

The set of recursions in (4) are those actually implemented for computational purposes and requires a

proper statistical treatment which we provide in Subsection 3.2 and Section 4 below.

We define the parameter vector as θ = (λ>,ψ>1 , . . . ,ψ
>
N )>, where λ = (ω, α, β)> ∈ Λ ⊂ R3

+

collects the parameters of the common factor process, while each ψi = (δi, φi, κi, νi)
> ⊂ R4

+ for

i = 1, . . . , N and such that ψi ∩ ψj = ∅ for i 6= j and ∪Ni=1ψi = Ψ ⊂ R4N
+ , those who drive the

dynamics of the idiosyncratic processes. Therefore, θ ∈ Θ ⊂ Rp, where Θ is the parameter space and

p = 3 + 4N .
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3 Statistical properties of the model

3.1 Stationarity, ergodicity & moments

We explore the stationary properties of the time series data generated by model (1). For this purpose,

we reformulate the equations in (4). In particular, we study the statistical properties for the system of

equations for the asset i = 1, . . . , N at time t given by

xit = ftσitεit,

f2t+1 = ω +

[
α

(
1

N

N∑
i=1

σ2
itε

2
it − 1

)
+ β

]
f2t , (5)

σ2
i,t+1 = δi +

[
κi

(
(νi + 1)ε2it

(νi − 2) + ε2it
− 1

)
+ φi

]
σ2
it.

Proposition 1 establishes the strict stationarity and ergodicity of the data generation process of the

dynamic conditional variance factor model. These results can be obtained after we have shown that

both the common factor volatility {f2t }t∈Z and the idiosyncratic volatilities {σ2
it}t∈Z, for i = 1, . . . , N ,

are themselves stationary and ergodic under the following parameter restrictions.

Assumption 3. The autoregressive parameters of the recursions in (5) satisfy |φi| < 1 for i = 1, . . . , N ,

and |β| < 1.

Proposition 1. Let Assumptions 1–3 be satisfied. Then, the common factor factor process {f2t } and

the idiosyncratic volatility processes {σ2
it} admit unique stationary solutions {f2t }t∈Z and {σ2

it}t∈Z

respectively for i = 1, . . . , N . Moreover, the multiplicative components sequence {ftσ2
t}t∈Z, with

σ2
t = (σ2

1t, . . . , σ
2
Nt)
>, is the unique stationary and ergodic solution of the volatility process. As a

corollary, it follows that data {xt}t∈Z generated by this model is also stationary and ergodic.

Next we concentrate on the number of bounded moments of model (1). Proposition 2 shows that

the data simulated from this model has m bounded moments, where m is a function of the bounded

moments nf of the common factor, the moments nσ = mini=1,...,N nσi , the minimum number of

bounded moments between the N -idiosyncratic processes, and the moments nε of the IID sequence.
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Proposition 2. Under assumptions 1–3, the stationary ergodic series {xit}t∈Z has m bounded mo-

ments, that is E[|xit|m] <∞ where

m =
nfnσnε

nσnε + nfnε + nfnσ
. (6)

Clearly, m > 2.

To conclude this section, we illustrate the simple moment structure of the data generating process.

It is straightforward to see that for i = 1, . . . , N we have E[xit|Ft−1] = 0 and V[xit|Ft−1] = (ftσit)
2.

In addition, V[xit] = f2t .

3.2 Invertibility

Next we focus on the invertibility property of the updating equations in model (4), and consider the

parameter updating recursions as functions of the observed data {xt}t∈N.

It should be noted how the filtering procedure of the model works. First, we filter the common factor

{f̂t}t∈N, which does not require knowledge of the idiosyncratic component. Second, we re-scale the

data xit/f̂t and filter for each series the idiosyncratic terms.

In practice, the recursion for the common factor and the idiosyncratic components must be started

at some fixed values f̂21 and σ̂2
i1 for i = 1 . . . , N . From these starting points we retrieve the estimated

paths {f̂2t }t∈N and {σ̂2
it}t∈N for i = 1 . . . , N . It is clear then these initializations will crucially affect

the whole filtering process, since the actual rescaled series are {xit/f̂t}t∈N from which we retrieve the

{σ̂2
it}t∈N. Thus, each σ̂2

it is a function of xit/f̂t.

We are now ready to state conditions which ensure the invertibility of the updating equations in (5).

Assumption 4 imposes parameter restrictions that are sufficient to obtain filter invertibility. Additionally,

it imposes the compactness of the parameter space, which will be useful for establishing the consistency

of the MLE.
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Assumption 4. The parameter space Θ = {Λ×Ψ} is compact and satisfies

1. |β − α| < 1 and

2. maxi=1,...,N{|φi − κi|, |φi + κiνi|} < 1.

Unlike other recent articles which also deal with robust nonlinear filtering methods for time-varying

locations (e.g. Harvey and Luati (2014) or Blasques et al. (2018)) we cannot rely on standard contraction

theorems, such as Bougerol’s Theorem 3.1 in Bougerol (1993) to obtain invertibility. Instead, given the

multivariate factor structure, we will apply a sequential method for proving invertibility, and work with

the contraction theorem for perturbed stochastic recursions stated in Theorem 2.10 of Straumann and

Mikosch (2006). The proof of Proposition 3 below relies on first starting with the common factor filter

and handling the idiosyncratic filter on a second stage.

Proposition 3 establishes the invertibility of the filtered common factor and the idiosyncratic volatil-

ities under the parameter space restrictions imposed by Assumption 4. Following the notation of Strau-

mann and Mikosch (2006) we shall use e.a.s. as a shorthand for the exponentially fast almost surely

convergence.

Proposition 3. Consider theN -dimensional vector process {xt}t∈Z be generated from model (1) under

assumptions 1–3, such that is stationary and ergodic. In addition, impose Assumption 4, then the filtered

common factor {f̂t}t∈N, started at some fixed point f̂21 ∈ R+, and the perturbed filters {σ̂2
it}t∈N for

i = 1 . . . , N converge e.a.s. and uniformly to their respective stationary and ergodic solutions {ft}t∈Z

and {σ2
it}t∈Z for i = 1 . . . , N , that is

sup
θ∈Θ
‖f̂2t − f2t ‖

e.a.s.−−→ 0 and sup
θ∈Θ
‖σ̂2

it − σ2
it‖

e.a.s.−−→ 0 as t→∞, (7)

for i = 1 . . . , N . Moreover, the filtered sequence {f̂2t σ̂
2
t}t∈N, with σ̂2

t = (σ̂2
1t, . . . , σ̂

2
Nt)
>, converges

to a unique stationary and ergodic solution, for any initialization (f̂21 σ̂
2
1) ∈ RN+1

+ ,

sup
θ∈Θ
‖f̂2t σ̂

2
t − f2t σ2

t‖
e.a.s.−−→ 0 as t→∞.
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4 Maximum likelihood estimation

Having established the stochastic properties of our factor model both as a data generating process (Sub-

section 3.1) and as a filter (Subsection 3.2), we can now turn to the sample properties of the maximum

likelihood estimators (MLE). In this section, we introduce the maximum likelihood procedure for the es-

timation of the parameters in model (1), we write the time-varying common factor and the idiosyncratic

terms as explicit functions of the unknown parameter vectors, that is f2t = f2t (λ) and σ2
it = σ2

it(ψi) for

i = 1, . . . , N .

The observation density of xit for i = 1, . . . , N is given by

p(xit|Ft−1,λ,ψi) =
Γ[(νi + 1)/2]

Γ[νi/2]
√
π(νi − 2)(ft(λ)σit(ψi))

[
1 +

x2it
(νi − 2)(f2t (λ)σ2

it(ψi))

]− νi+1

2

, (8)

and then, the conditional log-likelihood for a single observation of the i-th time series has the following

form

`it(λ,ψi) = log Γ

[
νi + 1

2

]
− log Γ

[
νi
2

]
− 1

2
log(νi − 2)− 1

2
log π

− 1

2
log
[
f2t (λ)σ2

it(ψi)
]
− νi + 1

2
log

[
1 +

x2it
(νi − 2)(f2t (λ)σ2

it(ψi))

]
. (9)

Therefore, the MLE boils down as the solution of

θ̂NT = (λ̂
>
T , ψ̂

>
1T , . . . , ψ̂

>
NT )> = arg max

λ∈Λ,ψ1,...,ψN∈Ψ

N∑
i=1

T∑
t=1

`it(λ,ψi). (10)

The asymptotic analysis of the model require the definition of the empirical expectations of the observed

log-likelihood functions of the filtered processes initialized at some fixed f1 and σi1 for i = 1, . . . , N

and the infeasible log-likelihood function where its starting values are drawn from the stationary distri-

butions, respectively. However, every marginal likelihood depends on the common factor when N > 1,

hence we have

L̂NT (θ) =
1

NT

N∑
i=1

T∑
t=1

ˆ̀
it(λ,ψi) and LNT (θ) =

1

NT

N∑
i=1

T∑
t=1

`it(λ,ψi). (11)
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Then, we define the limit

LN (θ) =
1

N
E

[
N∑
i=1

`it(λ,ψi)

]
. (12)

4.1 Consistency

This section establishes the consistency of the MLE as T → ∞. Following White (1994), we obtain

the strong consistency of the MLE in (10) from the uniform convergence of the log-likelihood function

L̂NT (θ) in (11) to its limit LN (θ) as defined in equation (12) and the identifiable uniqueness of the

maximizer θ0 ∈ Θ. To this end, we need a further assumption which ensure that the unknown true

parameter vector θ0 belongs to the compact parameter space Θ. Moreover, Assumption 5 below ensures

that the criterion can be differentiated around θ0.

Assumption 5. The true parameter θ0 = (λ>0 ,Ψ
>
0 )> belongs to the interior of Θ, i.e. θ0 ∈ int(Θ).

To prove strong consistency for T large, we make use of two preliminary Lemmas which facilitate

the discussion in proving the main consistency theorem. Lemma 4.1 builds on the stationarity, moments

and invertibility results of Section 3, and establishes the uniform convergence of the log-likelihood

LNT over the compact parameter space Θ. Lemma 4.2 obtains the identification of the true parameter

θ0 ∈ Θ.

Lemma 4.1. Let Assumptions 1–5 hold. Then, the limit LN (θ) is well defined and E[|`it(λ,ψi)|] <∞

for i = 1, . . . , N and t = 1, . . . , T . Then,

sup
θ∈Θ
‖LNT (θ)− LN (θ)‖ a.s.−−→ 0 as T →∞. (13)

Lemma 4.2. Under the Assumptions of Lemma 4.1, LN (θ) is uniquely maximized at the true parameter

θ0 i.e. LN (θ0) > LN (θ) ∀θ = (λ>,Ψ>)> ∈ Θ and θ 6= θ0.

We are now in position to prove the main result of this Subsection. Theorem 4.3 establishes the consis-

tency of the MLE for the well-specified dynamic factor model, as T →∞.
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Theorem 4.3 (Strong consistency). Consider model (1), satisfying Assumptions 1–5. Then,

θ̂NT → θ0 almost surely as T →∞. (14)

4.2 Asymptotic normality

We finally turn to the asymptotic normality of the MLE. The proof of this result builds upon Theorem

6.2 of White (1994). To this end, let us define ∇ = ∂
∂θ = ∂

∂(λ,Ψ) . Then, we prove the asymptotic nor-

mality of the MLE in (10) by ensuring that the following conditions hold true: (a) the strong consistency

of θ̂NT , (b) the empirical log-likelihood L̂NT (θ) defined in (11) is twice continuous differentiable in

θ ∈ Θ almost surely, (c) the asymptotic normality of the score function∇LNT (θ), (d) the uniform con-

vergence of the second derivative of the log-likelihood function∇LNT (θ) over the compact parameter

space Θ and finally, (e) the non-singularity of the Fisher’s information matrix.

As noted before, the proof of asymptotic normality of the MLE require several steps. We begin

by exploring the limit behaviour of the derivative processes {∇(f2t (λ)σ2
it(ψi))}t∈N and its perturbed

version {∇(f̂2t (λ)σ̂2
it(ψi))}t∈N. The perturbed derivative process {∇(f̂2t (λ)σ̂2

it(ψi))}t∈N arises from

the fact that the derivatives in ∇(f2t (λ)σ2
it(ψi)) are nonlinear functions of the nonstationary filtered

{f̂2t (λ)}t∈N and {σ̂2
it(ψi)}t∈N for i = 1 . . . , N , which will be stationary only in the limit, as shown in

Proposition 3.

Therefore, to ensure that the derivative processes the derivative processes {∇(f2t (λ)σ2
it(ψi))}t∈N

for i = 1, . . . , N , provide stationary approximations to {∇(f̂2t (λ)σ̂2
it(ψi))}t∈N for i = 1, . . . , N , we

introduce the following Proposition.

Proposition 4. Under Assumptions 1–5, the derivative sequences {∇(f2t (λ)σ2
it(ψi))}t∈N converges

e.a.s. to a unique stationary ergodic solution {∇(f2t λ)σ2
it(ψi))}t∈Z. Moreover, for any initializations

of the filters (f̂21 σ̂
2
1) ∈ RN+1

+ , the perturbed derivatives {∇(f̂2t (λ)σ̂2
it(ψi))}t∈N will converge e.a.s. to

the same stationary ergodic solution {∇(f2t (λ)σ2
it(ψi))}t∈Z for i = 1, . . . , N .
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The number of bounded moments will be also of interest later on and so, in addition to the previ-

ous proof of the existence and almost sure exponentially fast convergence of the differential processes

to a unique stationary ergodic solution, we provide the following result, which deal with the num-

ber of bounded moments of this solution. In addition to the notation of Proposition 2, we denote

with n′f the number of bounded moments of the derivatives of the common factor ∇f2t (λ) and with

n′σ = mini=1,...,N n
′
σi the minimum between the number of bounded moments of the derivatives of the

idiosyncratic terms∇σ2
it(ψi).

Proposition 5. Under Assumptions 1–5, {∇(f2t (λ)σ2
it(ψi))}t∈Z has m′ bounded moments uniformly

over the parameter space, that is E[supθ∈Θ ‖∇(f2t (λ)σ2
it(ψi))‖m

′
] <∞ where

m′ =
n′fnσ

nσ + n′f
+

nfn
′
σ

n′σ + nf
. (15)

Clearly, m′ > 2.

Next, we present the following Lemma where we show that the first derivative of the conditional

likelihood forms a martingale difference sequence with zero mean and finite variance.

Lemma 4.4. Under Assumptions 1–5, the derivative of the conditional likelihood {∇`it(λ,ψi)} is a

martingale difference sequence, i.e. E[∇`it(λ,ψi)|Ft−1] = 0 and moreover E[|∇`it(λ,ψi)|2] exists

and is finite.

Now we establish the asymptotic distribution of the score function.

Lemma 4.5. Under Assumptions 1–5, we obtain

√
NT∇LNT (θ)⇒ N (0,V ), as T →∞, where

V = E
[
∂`it(λ,ψi)

∂(λ,ψi)

∂`it(λ,ψi)

∂(λ,ψi)
>

]
.

Next, we enter in the realm of the second derivatives and present a new proposition.

14



Proposition 6. Under Assumptions 1–5, the second derivative {∇2(f2t (λ)σ2
it(ψi))}t∈N converges

e.a.s. to a unique stationary ergodic solution {∇2(f2t (λ)σ2
it(ψi))}t∈Z. Moreover, for any initial-

izations of the filter (f̂21 σ̂
2
1) ∈ RN+1

+ and ∇(f̂21 σ̂
2
1) ∈ R4N+3

+ , the perturbed second derivatives

{∇2(f̂2t (λ)σ̂2
it(ψi))}t∈N will converges e.a.s. to the same stationary ergodic solution {∇2(f2t (λ)σ2

it(ψi))}t∈Z

for i = 1, . . . , N .

Finally, we analyze the second differential of the conditional log-likelihood function. Specifically,

we need to prove that the empirical second differential processes, converge to their limits, which exist

and are both well defined, yielding non singular matrices when taking the derivatives with respect to the

vector of parameters.

Lemma 4.6. Let Assumptions 1–4 hold. Then, the limit ∇2LN (θ) is well defined and moreover it is a

nonsingular matrix for i = 1, . . . , N and every t = 1, . . . , T . Then,

sup
θ∈Θ
‖∇2LNT (θ)−∇2LN (θ)‖ a.s.−−→ 0 as T →∞. (16)

In conclusion, we present the last theorem which shows the asymptotic Gaussianity of the MLE.

Theorem 4.7 (Asymptotic normality of the MLE). Consider model (1), satisfying Assumptions 1–5.

Then,

√
T (θ̂NT − θ0) =⇒ N (0,I(θ0)−1),

where for i = 1, . . . , N

Ii(θ0) = −E
[

∂2`it(λ,ψi)

∂(λ,ψi)∂(λ,ψi)
>

∣∣∣∣
λ=λ0,ψi=ψi0

]

is the Fisher information matrix evaluated at the true parameter vectors λ0 and ψi0.
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5 Monte Carlo experiments

In this Section we present two Monte Carlo simulation experiments. The first study is concerned with

the finite sample behaviour of the MLE. In order to assess the reliability of the estimation method

described in Section 4, we generate time series which mimic the properties of the dataset used in the

empirical application in Subsection 6.1. The second study deals with the accuracy of the dynamic factor

model specified by recursion (2) in tracking a common volatility pattern when the panel of time series

is large. In this second experiment we aim to replicate the data from the whole panel of time series of

S&P100, used in Subsection 6.2.

5.1 Finite sample properties of the MLE

In order to study the finite sample properties of the MLE, we perform a Monte Carlo experiment.

With this simulation study, we aim to investigate and assess the reliability of the asymptotic theory

developed in Section 4. To this end, we chose to simulate a panel of time series directly from our

dynamic factor model with Student’s t errors, introduced in Section 2, which satisfies the condition

given in Assumptions 1-4.

In particular, we generate time series from a fixed data generating process which mimic the dynamic

structure of a panel of stock returns that shows strong factor structure. With these experiments we aim

to establish the accuracy of the proposed estimation procedure for empirically relevant cases. The

simulation scheme is as follows. We fix the dimension of the panel of the generated data to N = 10,

and the real data generating process for i = 1, . . . , 10 is

xit = ftσitεit εit ∼ t5(0, 1),

f2t+1 = 0.10 +

[
0.05

(
1

10

10∑
i=1

σ2
itε

2
it − 1

)
+ 0.95

]
f2t , (17)

σ2
i,t+1 = (1− 0.90) +

[
0.10

(
(5 + 1)ε2it

(5− 2) + ε2it
− 1

)
+ 0.90

]
σ2
it.

We replicate M = 1000 simulations and we generate two different set of 10 time series, where the

16



first set has T = 1000 observations while the second has T = 2000 observations. Note that the data

generating process in (17) satisfy Assumptions 1–3, which ensure that the data generated by that model

are stationary and ergodic by Proposition 1.

In our simulations the data generated by the model in (17) will inherits the empirical properties

of financial returns with cross-sectional dependence and persistent idiosyncratic terms. Moreover, by

fixing the innovations εit to be Student’s t IID random variables with νi = 5 degrees of freedom for

i = 1, . . . , N , the generated data will show with high probability extreme values, which mimic the

well-known fat-tailed nature of financial stock returns.

The results are reported in Table 1 in terms of empirical bias, root mean square error (RMSE) and

the coverage rate of the asymptotic 90% confidence interval (CI), calculated by adding and removing to

the Gaussian quantile the estimated standard errors. For the idiosyncratic terms, we report the average

of the same measures across all the time series in the panel.

Table 1: Monte Carlo simulations. The table reports the bias, RMSE and coverage of the 90% confidence
interval of the common factor and idiosyncratic parameter estimators. M = 1000 replications for
N = 10 and T = {1000, 2000}.

Bias RMSE 90% CI coverage

T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000

f2t (λ)

ω 0.048 0.028 0.105 0.090 0.915 0.902
α 0.068 0.008 0.057 0.018 0.909 0.904
β -0.042 -0.012 0.087 0.026 0.889 0.894

σ2
it(ψi)

φi -0.076 -0.039 0.064 0.047 0.884 0.894
κi 0.015 0.005 0.023 0.016 0.917 0.910
νi 0.102 0.081 0.553 0.501 0.913 0.909

Results suggest that the MLE deliver satisfactory results in both the common factor and the idiosyn-

cratic terms since the estimated biases are very small for all parameters. Notably, as the length of the
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time series T increases from 1000 to 2000 the empirical biases and root mean square errors show a sen-

sible reduction, which is in line with the asymptotic theory of the MLE discussed in Section 4. However,

we note downward biases for the estimated autoregressive coefficients, namely β for the common factor

and φi for i = 1, . . . , N which is also reflected in the coverage rate of the asymptotic 90% confidence

interval. In fact, the coverage rate, is slightly smaller than the fixed 90% level. Therefore, the up-

ward biases of all the other coefficient may be explained as a compensation for the downward biases of

the autoregressive coefficients. Nevertheless, the estimated coverage rate of the asymptotic confidence

interval is really close to the nominal 90% level and therefore, we can conclude that the maximum

likelihood procedure provides reliable results for medium-high dimensions of panel of fat-tailed stock

returns with strong factor structure and persistent idiosyncratic volatilities.

5.2 Tracking the common factor

In this second Monte Carlo experiment we aim to show that our dynamic factor model, provides a

satisfactory and parsimonious approach to track the common fluctuation of volatility in a large panel of

time series. To this end, we consider the following stochastic pattern for the common factor:

f2t = exp τt

τt+1 = 0.003 + 0.90τt + ηt, ηt ∼ N (0, 0.065), (18)

We fix N = 100, and the data-generation process for i = 1, . . . , 100 is given by

xit = ftεit εit ∼ tνi(0, 1), (19)

where we let the degrees of freedom νi for i = 1, . . . , 100 range in the following set ν = {5, 10, 15,∞}.

Clearly, the case where ν = ∞ will cover the Gaussian case, i.e. εit ∼ N (0, 1). From the data gener-

ating process defined by equations 18 and 19, we generate M = 1000 time series each with T = 1000

observations. We benchmark our dynamic factor recursion in equation (3) against an alternative ap-

proach, that consists in the following two-step procedure: First, we take the average of of the simulated
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returns, and second we apply a standard GARCH model on the average. In practice, the procedure can

be summarized by two equations,

yt =
1

100

100∑
i=1

xit

f2t+1 = ω + αy2t + βf2t . (20)

We label the procedure in (20) as sGARCH. As measures of accuracy we use the mean absolute error

(MAE) and the mean squared error (MSE), defined as

MAE =
1

T

T∑
t=1

|f̂2t − f2t |, MAE =
1

T

T∑
t=1

(f̂2t − f2t )2,

where for each simulation, with f̂2t we denote the estimated paths of the common factor with the recur-

sion in equation (3) and (20), while f2t denotes the true paths generated by (18). Moreover, to determine

the procedure between the recursions in (3) and (20) that provides the best approximation of the true

process in (18), we regress the true paths f2t against the estimated paths f̂2t , and report the resulting R2.

The results are summarized in Table 2, where we report averages across all the 1000 Monte Carlo

replications.

Table 2: MAE, MSE and R2 results. We perform M = 1000 replications for N = 100 and T = 1000.

ν = 5 ν = 10 ν = 15 ν =∞
MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE R2

Dynamic Factor Model 0.007 0.000 0.002 0.062 0.004 0.001 0.079 0.006 0.011 0.102 0.010 0.047
sGARCH 0.780 0.609 0.000 0.781 0.610 0.000 0.864 0.747 0.001 0.804 0.647 0.006

Results show that the proposed method to track the common volatility factor in a panel of time

series appears to be largely preferred with respect to the approach in (20). In particular, we note that

for all the different specifications considered, that is, the data-generation process in (19) with νi =

{5, 10, 15,∞} for i = 1, . . . , 100, the common factor tracked with the recursion in equation (3) gives

the best improvements in terms of all the measuresof accuracy, the MSE, MAE and R2. It is interesting
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to note that as the degrees of freedom becomes larger, that is the Student’s t distribution approaches to

the Gaussian distribution, the R2 gets larger, while the MSE and the MAE tend to increase. The reason

is that the estimated paths f̂2t from the simulated xit will always be higher in levels that the true f2t as it

also includes the idiosyncratic noise variance.

6 Empirical applications

In this Subsection, we illustrate two applications of our dynamic factor model to the panel of financial

returns from S&P100. The data are gathered from Yahoo! Finance1 and the returns are calculated from

closing prices. The observed financial time series span over a period from April 19, 1999 to April 17,

2019, leading to a total of T = 5, 033 observations. In a first application we consider financial returns

of ten selected companies, see Table 3. Then, we show that our parsimonious parametric dynamic factor

model is also able to analyze the full panel of S&P100 financial returns.

6.1 Ten stocks from S&P100

We consider time series returns from Exxon Mobile Corporation (XOM), Apple Inc. (AAPL), Ama-

zon.com Inc. (AMZN), International Business Machines (IBM), Microsoft Corporation (MSFT), A.O.

Smith Corporation (AOS), Trust Financial Corporation (BBT), Carnival Corporation (CCL), Capital

One Financial Corporation (COF) and Region Financial Corporation (RF). Descriptive statistics of the

considered returns are detailed in Table 3. Except XOM, AMZN and BBT, the distribution of the returns

are negatively skewed, while for all the series, these distributions are highly leptokurtic. In Figure 1 we

display each of the series described in Table 3, where it is possible to graphically explore the fat-tailed

nature of the considered time series. Also, by checking the data in the graphs, we note there is some

common pattern in the volatilities, there is much idiosyncratic behaviour and there are jumps/outliers.

Therefore, with this application, we aim to show the capability of our parsimonious parametric model

in robustly capturing a great amount of cross-sectional dependence and idiosyncratic behaviour.

1https://finance.yahoo.com/recent-quotes
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Table 3: Descriptive statistics. Stock index returns are calculated from closing prices. The time series
extend from April 19, 1999 to April 17, 2019 for a total of 5033 observations

Companies Ticker acronym Mean Std. Dev. Skewness Exc. Kurtosis

Exxon Mobile Corporation XOM 0.01 1.52 0.02 9.86
Apple Inc. AAPL 0.10 2.72 -3.95 106.46
Amazon.com Inc. AMZN 0.06 3.42 0.45 10.85
International Business Machines IBM 0.01 1.68 -0.16 9.16
Microsoft Corporation MSFT 0.02 1.93 -0.09 9.21
A.O. Smith Corporation AOS 0.05 2.12 -0.07 5.75
Trust Financial Corporation BBT 0.00 2.09 0.01 5.72
Carnival Corporation CCL 0.00 2.28 -1.05 21.75
Capital One Financial Corporation COF 0.01 3.01 -1.24 26.43
Region Financial Corporation RF -0.01 3.07 -0.54 41.62
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Figure 1: Panel of the ten financial returns from S&P100 separately. The time series extend from April
19, 1999 to April 17, 2019 giving a total of T = 5033 observations.

To show that correlations among of our panel of stock returns are changing over time, we split the

full data sample in subsamples. The subsamples are constructed from each available year, that is, we

obtain from the 1999 to 2019, 21 different subsamples of the panel of stock returns. After this, we
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compute the cross-correlation matrices for each sumbsamples. Although the sample cross-correlation

matrix is a consistent estimator, it can be seriously biased in finite sample. Therefore, to overcome

this issue, we follow the suggestion of Tsay (2005) and perform a bootstrap resampling method. The

correlations matrices of the ten stock returns of S&P100 are displayed in Figure 2 and it clearly unveils

time variations in the dependence structure and clustering among stocks.
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Figure 2: Yearly sample cross-correlation matrices of the daily returns of the ten financial returns from
S&P100 estimated from April 19, 1999 to April 17, 2019.

In Table 4 we report the maximum likelihood estimates of the dynamic factor model described in

Section 2. In order to show the robustness properties of the proposed model against jumps/outliers,

we fit to the ten returns from S&P100 described in Table 3 the model specified by the equations in (4)

with two different distributional assumptions, namely the Gaussian (N ) and the Student’s t (tνi ) with νi
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degrees of freedom for i = 1, . . . , 10. The univariate model, i.e.

xit = σitεit

σ2
i,t+1 = δi + φiσ

2
it + κiσ

2
it

[
(νi + 1)(x2it/f

2
t )

(νi − 2)σ2
it + (x2it/f

2
t )
− 1

]
,

for i = 1, . . . , 10, provides estimation benchmark results. We note that the Gaussian version of the

model in (4) is simply obtained by letting ν →∞.

As concerns the estimates reported in Table 4, the autoregressive coefficients β and φi for i =

1, . . . , 10, confirm the presence of high persistence in both the common and idiosyncratic volatilities

respectively. However, we note that while the estimated α are almost the same, the estimated κi for

i = 1, . . . , 10 are systematically lower in the Gaussian specification. This difference between the two

specification can be explained by the fact that when ν → ∞ the recursion of the idiosyncratic terms in

(4) is not uniformly bounded and therefore, extreme observations can have an unbounded effect on next

volatility values hence reducing the values of the coefficients κi. Thus, the robustness of the Student’s

t distribution provides a good alternative to reduce the downward or upward biases of the maximum

likelihood estimators.

To better understand the efficacy of the proposed multivariate model and the adequacy of the pro-

posed multivariate volatility model, in Table 5 we compare three likelihood based information criteria,

namely the Akaike information criterion (AIC), the Bayes information criteria (BIC) and the Hannan-

Quinn information criterion (HQC), and we perform a multivariate ARCH test to check for remaining

auto-correlation in the squared residuals to our dynamic factor model, against the univariate models and

two competing models belonging to the class of multivariate GARCH models, i.e. the BEKK and the

the dynamic conditional correlation (DCC), introduced by Engle and Kroner (1995) and Engle (2002)

respectively.

First, from the obtained results it is evident that the introduction of a dynamic common factor during

the estimation procedures significantly improve the in-sample fitting performance, in both the distribu-
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tional assumptions, namely the Gaussian and Student’s t. In particular, we note a drastic reduction of

all the likelihood based information criteria, which provide clear evidence of the presence of common

pattern in the volatilities. Second, by comparing the three likelihood based information criteria our dy-

namic factor model with Gaussian and Student’s t distributed disturbances, results also reveal that our

dynamic factor model give a better in-sample fit compared with both the BEKK and the DCC models. In

addition, the diagnostic analysis suggests that our model is the only one that greatly reduce the amount

of dependence in the ten series, as it is the only model where the multivariate ARCH statistic fails to

reject the null hypothesis of no serial correlation.

To get deeper insights, Figure 3 displays the daily sample standard deviation of the considered ten

returns from S&P100, against the common volatility factor f̂t(λ), filtered with the two distributional

assumptions for the disturbances, Gaussian and the Student’s t. From that figure, one can appreciate

the robustness property of common factor inherited from the prediction error 1
N

∑N
i=1 x

2
it − f̂2t (λ),

for i = 1, . . . , N . In fact, while the daily sample standard deviation clearly overestimate the common

volatility shared among the panel of stock returns, the dynamic common factor seems to well capture

the substantial amount of dependence across the panel. Moreover, in Figure 4 we also report the filtered

idiosyncratic terms, comparing the estimated volatilities for the Gaussian and Student’s t specifications.

The volatility estimates from the two models are substantially different for this panel of time series. We

see that extreme observations have a strong effect on filtered volatilities for the Gaussian specification,

whereas the Student’s t based recursions provide a more realistic representation of the idiosyncratic

volatilities. We conclude that our dynamic factor model with robust idiosyncratic components provide

a satisfactory alternative to model large panels of time series that show strong factor structures and

fat-tailed behaviours.
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Table 4: Ten stocks of the S&P100 estimated parameters and standard errors (in parenthesis) of the
marginals and dynamic factor models based on the Gaussian (N ) and the Student’s t (tνi ) distributed
disturbances. Estimation period is April 19, 1999 - April 17, 2019.

Dynamic Factor Model Univariate Model

N tνi N tνi

ω α β φi κi ω α β φi κi νi φi κi φi κi νi
f2t (λ) 0.053 0.101 0.974 0.054 0.102 0.974

(0.166) (0.023) (0.008) (0.154) (0.012) (0.005)
XOM 0.997 0.040 0.996 0.063 5.464 0.988 0.063 0.991 0.085 7.851

(0.002) (0.031) (0.000) (0.008) (0.422) (0.001) (0.041) (0.001) (0.011) (0.485)
APPL 0.998 0.013 0.996 0.038 4.959 0.999 0.037 0.999 0.075 4.843

(0.003) (0.016) (0.001) (0.008) (0.134) (0.002) (0.027) (0.001) (0.010) (0.253)
AMZN 0.999 0.008 0.998 0.037 4.614 0.989 0.019 0.999 0.092 4.059

(0.001) (0.021) (0.000) (0.010) (0.143) (0.002) (0.014) (0.001) (0.014) (0.244)
IBM 0.999 0.009 0.996 0.058 4.820 0.997 0.035 0.989 0.097 4.811

(0.001) (0.033) (0.000) (0.007) (0.206) (0.001) (0.025) (0.000) (0.015) (0.267)
MSFT 0.999 0.007 0.990 0.066 4.856 0.994 0.030 0.996 0.092 4.624

(0.001) (0.015) (0.001) (0.010) (0.223) (0.002) (0.020) (0.002) (0.010) (0.224)
AOS 0.688 0.094 0.902 0.091 4.788 0.999 0.020 0.999 0.072 4.405

(0.010) (0.019) (0.000) (0.015) (0.259) (0.001) (0.017) (0.000) (0.017) (0.279)
BBT 0.999 0.022 0.998 0.040 5.244 0.998 0.054 0.995 0.081 6.389

(0.002) (0.047) (0.000) (0.014) (0.358) (0.002) (0.035) (0.000) (0.025) (0.460)
CCL 0.824 0.050 0.932 0.059 5.002 0.989 0.032 0.999 0.072 4.890

(0.007) (0.026) (0.001) (0.010) (0.289) (0.001) (0.020) (0.001) (0.020) (0.320)
COF 0.996 0.010 0.997 0.026 5.100 0.999 0.038 0.999 0.085 5.098

(0.002) (0.032) (0.000) (0.014) (0.254) (0.001) (0.024) (0.000) (0.024) (0.312)
RF 0.999 0.027 0.998 0.049 5.284 0.998 0.063 0.999 0.095 6.470

(0.001) (0.028) (0.001) (0.015) (0.401) (0.002) (0.047) (0.002) (0.017) (0.489)

Table 5: Information criteria and diagnostic tests for the residuals of the competitor models based on
the Gaussian (N ) and the Student’s t (tνi ) distributed disturbances. ARCH LM refers to the p-values of
the test for remaining auto-correlation in the squared residuals.

AIC BIC HQC ARCH LM

N tνi N tνi N tνi N tνi

Univariate Model 205423.6 198352.9 205227.1 198548.7 205611.3 198421.5 0.001 0.002
Dynamic Factor Model 134899.5 128979.4 135114.8 129194.9 134975.2 129055.1 0.017 0.026
BEKK 190378.0 189405.6 190945.6 190045.0 190576.9 189629.6 0.001 0.001
DCC 188853.9 180219.5 189421.5 180858.8 189052.8 180443.1 0.001 0.001
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Figure 3: In solid cyan it is reported the daily sample standard deviation, computed from the ten stock
returns from S&P100, and in solid thick black, the filtered common volatility ft(λ) with both the
Gaussian and Student’s t dynamic factor models.

0.5

1.0

1.5

2000 2005 2010 2015 2020

 

X
O

M

2

4

6

2000 2005 2010 2015 2020

 

A
A

P
L

2

4

6

2000 2005 2010 2015 2020

 

A
M

Z
N

0.5

1.0

1.5

2.0

2000 2005 2010 2015 2020

 

IB
M

0.5

1.0

1.5

2.0

2000 2005 2010 2015 2020

 

M
S

F
T

2

4

6

8

2000 2005 2010 2015 2020

 

A
O

S

0

1

2

3

2000 2005 2010 2015 2020

 

B
B

T

3

6

9

2000 2005 2010 2015 2020

 

C
C

L

1

2

3

4

2000 2005 2010 2015 2020

 

C
O

F

0.0

2.5

5.0

7.5

2000 2005 2010 2015 2020

 

R
F

Figure 4: Filtered idiosyncratic volatilities σit(ψi) of the ten stock returns from S&P100. In dashed pink
and solid cyan we display those filtered with the Gaussian and the Student’s t specifications respectively.
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6.2 All stocks from S&P100

In the previous empirical application we shown that our methods can work with real data, and was able

to robustly retrieve both the common and the idiosyncratic conditional volatility patterns. However,

with this second exercise, we aim to show that our parsimonious model can work also with all stock

returns from the S&P100. Since the dynamic factor model with Student’s t appeared to be the most

suitable choice to model the stock returns from the S&P100, we provide estimation details only for this

specification. The MLE and their relative standard errors (in parenthesis) are reported in Table 6. To

improve readability, we list the median and the first and third quartile of all the coefficient estimates and

their standard errors, labelled as q0.50, q0.25 and q0.75 respectively.

Table 6: S&P100 estimated parameters and standard errors (in parenthesis) of the dynamic factor models
based on the Student’s t (tνi ) distributed disturbances. Estimation period is April 19, 1999 - April 17,
2019.

Dynamic Factor Model

tνi

ω α β φi κi νi
f2t (λ) 0.000 0.169 0.997

(0.054) (0.035) (0.007)
q0.25 0.995 0.030 4.999

(0.000) (0.012) (0.356)
q0.50 0.997 0.039 5.001

(0.002) (0.055) (0.458)
q0.75 0.998 0.058 5.020

(0.004) (0.078) (0.499)

Figure 5 shows the filtered common conditional volatility and the idiosyncratic components, which

provides a further visual evidence of the substantial difference between the two source of price fluctua-

tions. In particular, the presence of strong common conditional volatility seems obvious from the graph

and moreover, the idiosyncratic volatilities are stationary and vary around the unconditional means, that

is equal to one, see Assumption 2.
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Figure 5: Filtered common volatility ft(λ) (upper panel), and filtered idiosyncratic volatilities σit(ψi)
(lower panel) of stock returns from S&P100. The time series extend from April 19, 1999 to April 17,
2019 giving a total of T = 5033 observations.

In analogy with the Monte Carlo experiment presented in Subsection 5.2, we also filter the common

volatility with the procedure as implied by equation (20), that is the standard GARCH (sGARCH) model

applied to the cross-sectional average. The two filtered paths can be visually compared as in Figure 6,

where it is evident the inadequacy of the sGARCH in capturing most of the common variance in price

fluctuations. The deterioration of the filtered common volatility is clearly visible. While our model

suggests that the increase in volatility in the stocks in S&P100 can be attributed mostly to a common

component, the sGARCH struggle to catch this empirical feature in the data. These empirical results

further emphasize the efficiency of our multivariate, yet simple approach.
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Figure 6: Filtered common volatilities with the dynamic factor model in (4) (black), and sGARCH in
(20) (cyan) of stock returns from S&P100. The time series extend from April 19, 1999 to April 17, 2019
giving a total of T = 5033 observations.

7 Conclusion

We have introduced a new dynamic conditional variance factor model which features a basic updat-

ing equation for the common factor and a robust score-driven updating equation for the idiosyncratic

factors. We derived stochastic properties for the model, including bounded moments, stationarity, er-

godicity, and filter invertibility. Additionally, we established the consistency and asymptotic normality

of the maximum likelihood estimator (MLE) in large samples. A Monte Carlo study has shown that the

MLE has good finite sample properties and the reliability of the proposed method to track the common

volatility pattern from a large panel of time series. Finally, two empirical illustrations have shown for

a panel of ten selected stocks from the S&P100 and a panel of all 100 stocks that our parsimonious

dynamic multiplicative factor structure have various advantages over other competing models. The em-

pirical results have shown the key importance of robust filtering methods to facilitate the idiosyncratic

factors in financial data sets.
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A Proofs

A.1 Proof of Proposition 1

Proof. We note that by making the substitution g(zt) = δi and c(zt) = φi +κi[(νi + 1)ε2it]/[(νi− 2) +

ε2it] − 1 we can embed the model to the more general class of GARCH processes considered by Ling

and McAleer (2002), that is

σ2
i,t+1 = g(εit) + c(εit)σ

2
it.

Thus, relying on Theorem 2.1 of Ling and McAleer (2002), if E[c(εit)] < 1, then there exist a unique

stationary and ergodic solution. In our case, it is easy to see that

E[c(εit)] = E
[
φi + κi

(
(νi + 1)ε2it
νi − 2 + ε2it

− 1

)]
= φi < 1.

The second equality follows directly from the properties of the Student’s t distribution, in fact the

random variable

bit =
ε2it

νi − 2 + ε2it
, (21)

is distributed as a beta random variable with shape and scale parameters of 1/2 and νi/2 respectively

and its expected value is 1/(νi + 1), see Harvey (2013) for more details. The last inequality follows

trivially by assumptions. In conclusion, by recursive arguments, it is easy to see that we could also

achieve the following almost sure representation of the process,

σ2
i,t+1 = g(εit) + g(εit)

∞∑
k=1

k∏
i=0

c(εit−1). (22)

It is important to note that {εit}t∈Z forms an IID sequence of positive random variables.

Having verified that under maintained assumption the Beta-t-GARCH generates stationary ergodic

paths, we can show that the same holds for the common factor process. To be specific, we consider the
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same recursion

f2t+1 = g(εit) + c(εit)f
2
t , (23)

where g(εit) = ω and c(εit) = β + α(1/N
∑N
i=1 σ

2
itε

2
it − 1). Again, also in this case {εit}t∈Z forms

an IID sequence.

Thus, it is clear that

E
[
β + α

(
1

N

N∑
i=1

σ2
itε

2
it − 1

)]
= β + α

(
δi

1− φi
− 1

)
= β < 1,

where the first equality follow by independence between the idiosyncratic processes and the innova-

tions and then, by unfolding and recalling that δi = 1 − φi for i = 1, . . . , N , the second equality

follows. Again, the inequality is ensured by assumptions and the implied almost sure representation is

the analogous version of (22).

In conclusion, Assumptions 1 and 2, ensure that the sequence composed by {(f2t , (σ2
t )
>, ε>t )}

converges to the unique stationary ergodic solution {(f2t , (σ2
t )
>, ε>t )}t∈Z. Thus, the same old true for

{f2t σ2
it}t∈Z and {ftσitεit}t∈Z for i = 1, . . . , N by Proposition 3.36 of White (2001), implying that the

series {xit}t∈Z is second-order stationary.

A.2 Proof of Proposition 2

Proof. By similar arguments as those in the Proof of Proposition 1, if E[εjit] <∞, we obtain necessary

and sufficient conditions for the existence of the moments of the Beta-t-GARCH and the common factor

process, that is

E[c(εit)
j/2] < 1 for j = 2, 4, . . . ,

by Theorem 2.2 of Ling and McAleer (2002).

To see this, consider the case where d ∈ [1,∞), the almost sure representation obtained in equation

(22) in the Proof of Proposition 1 and recall that {εit}t∈Z forms an IID sequence of positive random
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variables. Then, by virtue of the Minkowsky’s inequality, we have

E[σ2d
i,t+1] ≤ g(εit)

d + g(εit)
dE
[ ∞∑
k=1

k∏
i=0

c(εi,t−i)
d

]

≤ g(εit)
d + g(εit)

d
∞∑
k=1

(
E[c(εi,t−i)

d]

)k/d
,

thus, if E[c(εit)
j/2] < 1 for j = 2, 4, . . . , we obtain E[σji,t+1] <∞ since it satisfies the Cauchy criteria.

Now, we can easily show that an analogous result hold true for the common factor process {f2t+1}t∈Z,

since it admits the same representation, displayed in equations (23). Thus, following the same recursive

argument we get that E[f jt+1] <∞.

To conclude the proof, we will prove how the formula in (6) may be merely obtained as a straight-

forward application of the generalized Hölder’s inequality.

Suppose that

1

m
=

1

nf
+

1

nσ
+

1

nε
=
nσnε + nfnε + nfnσ

nfnσnε
.

Then, the generalized Hölder’s inequality implies that

‖xit‖m = ‖ftσitεit‖m ≤ ‖ft‖nf ‖σit‖nσ‖εit‖nε ,

where, for any scalar random variable x, we define the norm ‖x‖n = (E[|x|n])1/n.

By the arguments above, we know that ‖ft‖nf < ∞, ‖σit‖nσ < ∞ and ‖εit‖nε < ∞ for some

nf , nσ and nε for i = 1, . . . , N . In particular, this means that

ft ∈ Lnf , σit ∈ Lnσ , εit ∈ Lnε ,

and as a matter of fact

(ft × σit × εit) ∈ Lm.
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Therefore, we obtain the desired number of moments

m =
nfnσnε

nσnε + nfnε + nfnσ
.

A.3 Proof of Proposition 3

Proof. We start with the filter for the common factor. The linearity of the recursion makes the evaluation

of invertibility particularly easy. In fact, by repeated substitution it is possible to see that the filtered

common factor

f̂2t+1 =
ω

1− (β − α)
+ α

1

N

N∑
i=1

t−1∑
j=0

(β − α)jx2i,t−j + (β − α)t−1f̂21 , (24)

where f̂21 is some initial value. It is clear, then, that the condition |β−α| < 1 ensures that asymptotically,

as t → ∞, the impact of this initial value vanishes and hence the filter is invertible. In particular, f̂t

converges to the limit

f2t+1 =
ω

1− (β − α)
+ α

1

N

N∑
i=1

∞∑
j=0

(β − α)jx2i,t−j . (25)

We now consider the perturbed stochastic recurrence equation

̂̂
0σ2

i,t+1 = Φ̂t(
̂̂
0σ2

it),

which is a perturbed version of the filtered σ̂2
i,t+1 = Φt(σ̂

2
it) since Φ̂t depends on the nonstatonary

filtered factor f̂2t whereas Φt depends on the limit stationary filtered factor f2t . The unperturbed version

takes the limit {f2t }t∈Z and generate σ̂2
i,t+1 = Φt(σ̂

2
it). We verify the condition of Theorem 2.10 in

Straumann and Mikosch (2006) and proceed step-by-step.

First, the conditions of the Bougerol’s Theorem must hold for the unperturbed recurrence equation.

To start, we note that {xit}t∈Z and {f2t }t∈Z are stationary and ergodic and the initial log-moment
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condition is satisfied since

E
[

log+

∣∣∣∣δi[(φi − κi) + κi
(νi + 1)(x2it/f

2
t )

(νi − 2)σ̄2
i + (x2it/f

2
t )

]
σ̄2
i

∣∣∣∣]
≤ log+ |δi|+ log+ |φi − κi|+ log+ |κi|

+ E
[

log+

∣∣∣∣ (νi + 1)(x2it/f
2
t )

(νi − 2)σ̄2
i + (x2it/f

2
t )
σ̄2
i

∣∣∣∣]+ log+ |σ̄2
i |,

and we can see that

E
[

log+

∣∣∣∣ (νi + 1)(x2it/f
2
t )

(νi − 2)σ̄2
i + (x2it/f

2
t )
σ̄2
i

∣∣∣∣] <∞
since it is uniformly bounded in σ̄2

i ≥ δi = (1− φi) > 0 implied by |φi| < 1 from Assumptions 2 and

3, and uniformly bounded ∀xit ∈ R. We also require that the unperturbed recurrence equation satisfies

the contraction condition

E
[

log sup
σ2
i

∥∥∥∥∂Φ(σ2
it)

∂σ2
it

∥∥∥∥] < 0,

which is verified from the fact that

Ait(ψi) =
∂Φ(σ2

it)

∂σ2
it

= (φi − κi) + κi
(νi + 1)(x4it/f

4
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]2

, (26)

and therefore

sup
σ2?
i

∥∥∥∥(φi − κi) + κi
(νi + 1)(x4it/f

4
t )

[(νi − 2)σ2?
i + (x2it/f

2
t )]2

∥∥∥∥ ≤ max
i=1,...,N

{
|φi − κi|; |φi + κiνi|

}
< 1,

because, as before σ2?
i ≥ δi = (1− φi) > 0 by Assumption 3 and ft ≥ ω > 0. Moreover, is uniformly

bounded ∀xit ∈ R and then, the result follows from Assumption 4. In practice, the contraction condition

will ensures that

sup
θ∈Θ
‖σ̂2

it − σ2
it‖

e.a.s.−−→ 0 as t→∞.

Second, we verify the logarithmic moment for the stationary solution {σ2
it}t∈Z, which is clearly implied
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by Proposition 2, in fact

E[σji,t+1] = E[Φ(σ2
it)
j/2] <∞

for j = 2, 4, . . . .

Third, the perturbed stochastic recurrence equation ̂̂0σ2
i,t+1 = Φ̂t(

̂̂
0σ2

it), must converges to the

unperturbed counterpart, that is verified as an application of the mean value theorem. We have

sup
θ∈Θ
‖Φ̂t(̂̂0σ2

it)− Φt(σ̂
2
it)‖ ≤ sup

θ∈Θ

∥∥∥∥∂Φ?t (σ̂
2
it)

∂f2?t

∥∥∥∥ sup
θ∈Θ
‖f̂2t − f2t ‖,

where

∂Φt(σ
2
it)

∂f2t
=

κiσ
2
it(νi + 1)(x4it/f

6
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]2

− κiσ
2
it(νi + 1)(x2it/f

4
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]

,

is uniformly bounded.

To see this define with b̂t, that is the nonstationary counterpart of

bt =
(x2it/f

2
t )

(νi − 2)σ2
it + (x2it/f

2
t )
, (27)

which takes σ̂2
it and f̂2t instead of σ2

it and f2t . It can be check that b̂t is bounded between 0 and 1. Then,

we can write

sup
θ∈Θ

∥∥∥∥∂Φ?t (σ̂
2
it)

∂f2?t

∥∥∥∥ ≤ sup
θ∈Θ

sup
f

∥∥∥∥ 1

f2?t

∥∥∥∥ sup
θ∈Θ
‖κiσ̂2

it(νi + 1)(b̂2it − b̂it)‖

≤ sup
θ∈Θ

∥∥∥∥ 1

ω

∥∥∥∥ sup
θ∈Θ
‖κiσ̂2

it(νi + 1)(b̂2it − b̂it)‖ <∞,

where the last inequality holds because ω > 0, as imposed by Assumption 1, and σ̂2
it is uniformly

bounded.

We obtain

sup
θ∈Θ
‖Φ̂t(̂̂0σ2

it)− Φt(σ̂
2
it)‖

e.a.s.−−→ 0 as t→∞.

as a straightforward application of Lemma 2.1 in Straumann and Mikosch (2006), since as t → ∞ the
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norm supθ∈Θ ‖f̂2t − f2t ‖ will vanish by previous arguments.

Fourth, it only remains to verify that the Lipschitz constant of the perturbed stochastic recurrence

equation converges exponentially fast almost surely to the Lipschitz constan of the unperturbed map,

that can be verified again by the mean value theorem. We have

sup
θ∈Θ
‖Φ̂t(̂̂0σ2

it)− Φt(σ̂
2
it)‖ ≤ sup

θ∈Θ

∥∥∥∥∂2Φ?t (σ
2
it)

∂σ2?
it ∂f

2?
t

∥∥∥∥ sup
θ∈Θ
‖σ̂2

it − σ2
it‖,

where

∂2Φt(σ
2
it)

∂σ2
it∂f

2
t

=
κi(νi + 1)(x4it/f

6
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]2

− (2[(νi − 2)σ2
it + (x2it/f

2
t )](νi − 2))κi(νi + 1)(x4it/f

6
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]2

− κi(νi + 1)(x2it/f
4
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]

+
κiσ

2
it(νi − 2)(νi + 1)(x2it/f

4
t )

[(νi − 2)σ2
it + (x2it/f

2
t )]

Therefore, by the same argument as before, we can rewrite the above equation in terms of the random

variables bt, in fact

sup
θ∈Θ

∥∥∥∥∂2Φ?t (σ
2
it)

∂σ2?
it ∂f

2?
t

∥∥∥∥ ≤ sup
θ∈Θ

sup
f

∥∥∥∥κi(νi + 1)b̂t
f2?t

∥∥∥∥
×
[
1 + ‖b̂2t‖+

(
‖(2[(νi − 2)σ2?

it + (x2it/f
2?
t )](νi − 2))‖

)
+ ‖σ2?

it (νi − 2)‖
]

so that, it is possible to verify that

sup
θ∈Θ

∥∥∥∥∂2Φ?t (σ
2
it)

∂σ2?
it ∂f

2?
t

∥∥∥∥ <∞,
and since supθ∈Θ ‖σ̂2

it − σ2
it‖

e.a.s.−−→ 0 as t → ∞ we could apply again Lemma 2.1 in Straumann and

Mikosch (2006) and obtain the invertibility of the filter.

Finally, since the multiplicative structure of model (4), it remains to show that the filtered {f̂2t σ̂2
it}t∈N

is still invertible and hence will converge to the unique stationary and ergodic solution {f2t σ2
it}t∈N for

i = 1, . . . , N and for any fixed starting points f̂21 and σ̂2
1.
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We easily achieve this result by using the following elementary decomposition

‖(f̂2t σ̂2
it)− (f2t σ

2
it)‖ =‖(f̂2t − f2t )σ2

it + f2t (σ̂2
it − σ2

it) + (f̂2t − f2t )(σ̂2
it − σ2

it)‖

≤‖f̂2t − f2t ‖ ‖σ̂2
it‖+ ‖σ̂2

it − σ2
it‖ ‖f2t ‖+ ‖f̂2t − f2t ‖ ‖σ̂2

it − σ2
it‖, (28)

for i = 1, . . . , N by virtue of the triangle inequality and the Cauchy-Schwartz’s inequality. At this point,

we immediately recognize that supθ∈Θ ‖f̂2t −f2t ‖
e.a.s.−−→ 0 and supθ∈Θ ‖σ̂2

it−σ2
it‖

e.a.s.−−→ 0. Furthermore,

recall from the previous section that we have E[supθ∈Θ ‖f2t ‖] < ∞ and E[supθ∈Θ ‖σ2
it‖] < ∞ for

i = 1, . . . , N . Thus, the Jensen’s inequality implies again the existence of their log-moments and we

are allowed to apply Lemma 2.1 of Straumann and Mikosch (2006) componentwise to the last inequality

in order to obtain

sup
θ∈Θ
‖f̂2t σ̂2

it − f2t σ2
it‖

e.a.s.−−→ 0 as t→∞,

which completes the proof.

A.4 Proof of Lemma 4.1

Proof. We begin our proof with the first uniform convergence in (13), where 1 ≤ N <∞ is fixed. The

first step is to show that the ratio x2it/[(νi − 2)(f2t (λ)σ2
it(ψi))] has at least two bounded moments. As

a matter of fact, this condition will be easily satisfied as soon as its denominator is bounded away from

zero. To this end, we first note that by definition and assumption 1 f2t (λ) ≥ ω > 0. Moreover, by

Assumption 3 σ2
it(ψi) ≥ δ = (1 − φi) > 0 for i = 1, . . . , N . Therefore, the existence of the first two

moments of x2it/[(νi − 2)(f2t (λ)σ2
it(ψi))] is easily satisfied from the distributional assumptions, since

the necessary condition mini=1,...,N νi > 2 is always ensured by the definition of the model.

Now we verify that E[| log(f2t (λ)σ2
it(ψi))|] <∞ and then we have

E[| log(f2t (λ)σ2
it(ψi))|] ≤ E[| log f2t (λ)|] + E[| log σ2

it(ψi)|].

It is possible to show that E[| log f2t (λ)|] < ∞, since under Assumption 4, Proposition 2 entails
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E[| log f2t (λ)|] < ∞. We note that, E[log f2εt (λ)] < ∞ for some ε > 0 due to the compactness

of Θ. Additionally, f2t (λ) is bounded away from zero almost surely because ω > 0 and hence

E[log f2t (λ)] <∞ which implies E[| log f2t (λ)|] <∞.

Using similar arguments it is possible to show that E[| log σ2
it(ψi)|] < ∞ since under Assumption

2 mini=1,...,N νi > 2 and φ < 1. Note also that the multiplicative recursion {(f2t (λ)σ2
it(ψi))} is

bounded away from zero for all λ and ψi with i = 1, . . . , N almost surely and therefore we obtain that

E[log(f2t (λ)σ2
it(ψi))] <∞ which further implies E[| log(f2t (λ)σ2

it(ψi))|] <∞.

The first result in (13) is then obtained by appelling at the uniform strong law of large numbers

established by Theorem 2.7 in Straumann and Mikosch (2006). In fact, this ergodic theorem applies

under the moment bound E[supθ∈Θ |`it(θ)|] <∞, which is clearly satisfied by virtue of the discussion

above and standard continuity arguments. We obtain this result as an application of Theorem 3.5.8 in

Stout (1974) on the likelihood function over the stationary and ergodic sequence {(f2t , (σ2
t )
>, ε>t )}t∈Z.

A.5 Proof of Lemma 4.2

Proof. Consider the conditional density (8) and the likelihood (9). Let us define `it(θ0) ≡ `it(λ0,ψi0)

and `it(θ) ≡ `it(λ,ψi) and note that, if νi0 = νi, then

0 =`it(θ)− `it(θ0)

=
1

2
log

(f2t (λ)σ2
it(ψi))

(f2t (λ0)σ2
it(ψi0))

− (νi0 + 1)

2
log

[(
1 +

x2it
(νi0 − 2)(f2t (λ)σ2

it(ψi))

)/(
1 +

x2it
(νi0 − 2)(f2t (λ0)σ2

it(ψi0))

)]
,

where the equation holds if and only if (f2t (λ)σ2
it(ψi)) = (f2t (λ0)σ2

it(ψi0)) for all t and i = 1, . . . , N ,

therefore one only need to prove that this last equality is true if and only if θ = θ0. Moreover, it is clear

that the {(f2t (λ)σ2
it(ψi))}t∈Z and {(f2t (λ0)σ2

it(ψi0))}t∈Z are stationary ergodic sequences, therefore

the same holds true for the sequence generated by their differences and hence we are allowed to analyze
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the difference recursion and to this end we define the following random variables

ηit =

(
1

N

N∑
i=1

σ2
itε

2
it − 1

)
uit =

(
(νi0 + 1)ε2it

(νi0 − 2) + ε2it
− 1

)
.

Then, after some manipulations and recalling that δi = (1−φi) with i = 1, . . . , N , it possible to rewrite

the difference recursion as

(f2t+1(λ)σ2
i,t+1(ψi))− (f2t+1(λ0)σ2

i,t+1(ψi0))

= (ω − ω0)− (ωφi − ω0φi0) + ξitf
2
t (λ0) + ζitσ

2
it(ψi0) + ςit(f

2
t (λ0)σ2

it(ψi0)), (29)

where

ςit =(βφi − β0φi0) +
{

(ακi − α0κi0)
}
ηituit +

{
(αφi − α0φi0)

}
ηit +

{
(βκi − β0κi0)

}
uit, (30)

ξit =(β − β0)− (βφi − β0φi0) +
{

(α− α0)− (αφi − α0φi0)
}
ηit, (31)

ζit =(ωφi − ω0φi0) +
{

(ωκi − ω0κi0)
}
uit. (32)

The discussion may start by considering the terms (ω − ω0) and (ωφi − ωi0φi0). It is clear that every

random variable involved in equations (29) and the related random coefficients are independent from

each other and so excluding cases where linear combinations of the variable are null. Hence, in order to

obtain (f2t+1(λ)σ2
i,t+1(ψi))− (f2t+1(λ0)σ2

i,t+1(ψi0)) = 0 we should have the equivalence

(ω − ω0)− (ωφi − ω0φi0) = ξitf
2
t (λ0) + ζitσ

2
it(ψi0) + ςit(f

2
t (λ0)σ2

it(ψi0)),

but clearly, under the conditions α > 0 and κi > 0 for i = 1, . . . , N , this is not possible, since the

distributions of f2t+1(λ0), σ2
i,t+1(ψi0) and then (f2t+1(λ0)σ2

i,t+1(ψi0)) are ensured to be nondegenerate

almost surely for all t. As a consequence, one must have

ω = ω0 φi = φi0.
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Now consider the equation (32). Of course, the result just obtained entails the condition (κi−κi0)uit =

0, which is possible if and only if κi = κi0 by continuity of uit.

Finally, equation (31) give us

(β − β0)− (βφi − β0φi0) =
{

(α− α0)− (αφi − α0φi0)
}
ηit.

However, we note again that β = β0 and α = α0 because ηit is random. Then, the discussion extends

trivially for (30). Therefore, the proof is complete.

A.6 Proof of Theorem 4.3

Proof. First, we split the likelihood function as follows

sup
θ∈Θ
‖L̂NT (θ)− LN (θ)‖ ≤ sup

θ∈Θ
‖L̂NT (θ)− LNT (θ)‖+ sup

θ∈Θ
‖LNT (θ)− LN (θ)‖. (33)

Let us consider the difference of the first term in the right hand side. Applying the mean value expansion

around (f̂2?t (λ)σ̂2?
it (ψi)) for i = 1, . . . , N yields

sup
θ∈Θ
‖L̂NT (θ)− LNT (θ)‖

≤ sup
θ∈Θ

∥∥∥∥ ∂L̂NT (θ)

∂(f2?t (λ)σ2?
it (ψi))

∥∥∥∥ sup
θ∈Θ
‖(f̂2t (λ)σ̂2

it(ψi))− (f2t (λ)σ2
it(ψi))‖. (34)

where (f2?t (λ)σ2?
it (ψi)) lies between (f̂2t (λ)σ̂2

it(ψi)) and (f2t (λ)σ2
it(ψi)). The partial derivative can

be expressed as

∂LNT (θ)

∂(f2?t (λ)σ2?
it (ψi))

=
1

NT

N∑
i=1

T∑
t=1

1

(2f2?t (λ)σ2?
it (ψi))

[(νi + 1)b?it(θ)− 1], (35)

where b?it(θ) is defined as

b?it(θ) =
x2it/(f

2?
t (λ)σ2?

it (ψi))

νi − 2 + x2it/(f
2?
t (λ)σ2?

it (ψi))
,

and it can be easily noted that this is a random variable bounded in the interval [0, 1).

Now, considering the fact that both (f2?t (λ)σ2?
it (ψi)) and (f̂2?t (λ)σ̂2?

it (ψi)) lie in [c,+∞) and
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[g,+∞), where

c = inf
θ∈Θ

(
ω

1− (β − α)

)
, g = inf

θ∈Θ

(
δi

1− (φi − κi)

)
,

such that c > 0 and also g > 0, we obtain that

sup
θ∈Θ

∥∥∥∥ ∂LNT (θ)

∂(f2?t (λ)σ2?
it (ψi))

∥∥∥∥ ≤ 1

2cg

(
maxψ1,...,ψN∈Ψ(νi + 1)

cg
+ 1

)
= M̄,

and therefore

sup
θ∈Θ
‖L̂NT (θ)− LNT (θ)‖

≤ 1

N

N∑
i=1

∞∑
t=1

M̄ × sup
θ∈Θ
‖(f̂2t (λ)σ̂2

it(ψi))− (f2t (λ)σ2
it(ψi))‖. (36)

Clearly, the first term on the right hand side is finite and supθ∈Θ ‖(f̂2t (λ)σ̂2
it(ψi))−(f2t (λ)σ2

it(ψi))‖
e.a.s.−−→

0 by virtue of Proposition 3. Hence, we satisfy the conditions of Lemma 2.1 in Straumann and Mikosch

(2006) and we obtain supθ∈Θ ‖L̂NT (θ)− LNT (θ)‖ a.s.−−→ 0, as T →∞.

Moreover, we can show that supθ∈Θ ‖LNT (θ) − LN (θ)‖ a.s.−−→ 0, as an application of Lemma 4.1.

In Lemma 4.2 we have established the identifiability of the unique maximizer θ0 ∈ Θ where, we note

that Θ is compact and the continuity of LNT (θ) in θ ∈ Θ, ∀t ∈ N implies that the limit LN (θ) is

also a continuous function in θ. It follows that θ0 ∈ Θ is also unique, see White (1994). The strong

consistency thus follows for N fixed and T →∞.

A.7 Proof of Proposition 4

Proof. First, note that

∇(f2t (λ)σ2
it(ψi)) = (∇f2t (λ))σ2

it(ψi) + f2t (λ)(∇σ2
it(ψi)), (37)
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with∇f2t (λ) composed by

∂f2t+1(λ)

∂ω
= (β − α)

∂f2t (λ)

∂ω
+ 1,

∂f2t (λ)

∂α
= (β − α)

∂f2t (λ)

∂α
+

1

N

N∑
i=1

x2it − f2t (λ), (38)

∂f2t+1(λ)

∂β
= (β − α)

∂f2t (λ)

∂β
+ f2t (λ),

while for i = 1, . . . , N ,∇σ2
it(ψi) is composed by

∂σ2
i,t+1(ψi)

∂φi
= Ait(ψi)

∂σ2
it(ψi)

∂φi
+ σ2

it(ψi)− 1,

∂σ2
i,t+1(ψi)

∂κi
= Ait(ψi)

∂σ2
it(ψi)

∂κi
+ σ2

it(ψi)uit(ψi), (39)

∂σ2
i,t+1(ψi)

∂νi
= Ait(ψi)

∂σ2
it(ψi)

∂νi
+ κiσ

2
it(ψi)ait(ψi),

where Ait(ψi) is as in (26) and

uit(ψi) =

(
(νi + 1)(x2it/f

2
t (λ))

(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))

− 1

)
, (40)

ait(ψi) =

(
(x2it/f

2
t (λ))

(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))

− σ2
it(ψi)(νi + 1)(x2it/f

2
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

)
. (41)

In the same vein of Proposition 3, we shall prove the e.a.s. convergence by verifying the conditions of

Theorem 2.10 in Straumann and Mikosch (2006).

First, the conditions of the Bougerol’s Theorem must hold for the unperturbed recurrence equations

in (38) and (39).

As concern the recursions in (38), it is easy to see that

E
[

log+

∣∣∣∣∂f2t+1(λ)

∂ω

∣∣∣∣] ≤ log+ |β − α|+ log+

∣∣∣∣∂f̄2∂ω

∣∣∣∣ <∞,
E
[

log+

∣∣∣∣∂f2t+1(λ)

∂ω

∣∣∣∣] ≤ log+ |β − α|+ log+

∣∣∣∣∂f̄2∂α

∣∣∣∣+ E
[

log+

∣∣∣∣ 1

N

N∑
i=1

x2it

∣∣∣∣]+ log+ |f̄2| <∞,

E
[

log+

∣∣∣∣∂f2t+1(λ)

∂β

∣∣∣∣] ≤ log+ |β − α|+ log+

∣∣∣∣∂f̄2∂β

∣∣∣∣+ E
[

log+

∣∣∣∣∂f̄2∂β

∣∣∣∣]+ log+ |f̄2| <∞,

where the first and the third inequalities follow trivially, while for the second inequality we obtain the
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log-moment from Assumption 2 since mini=1,...,N νi > 2 implies E[x2it] <∞ for i = 1, . . . , N .

Moreover, for the recursions in (39) we first note that

E
[

log+ |Ait(ψi)|
]

= E
[

log+

∣∣∣∣(φi − κi) + κi
(νi + 1)(x4it/f

4
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

∣∣∣∣] <∞,
since it is uniformly bounded in σ2

it > δi = (1 − φi) > 0 by Assumption 3, and uniformly bounded

∀xit ∈ R. Then, we need to show that equations (40) and (41), have finite log-moments. However, by

similar arguments as in the proof of Proposition 3, it is straightforward to show that all the three random

variables are uniformly bounded, and therefore

E[log+ |uit(ψi)|] <∞, and E[log+ |ait(ψi)|] <∞.

It follows that all the recursions in (39) have finite log-moments. In addition, we also note that the

contraction conditions stated in Proposition 3 hold for the unperturbed recurrence equations, and thus

we fulfil the requirements of Bougerol’s Theorem for the unperturbed recurrence equations.

Second, we need to show that the perturbed derivatives in ∇f̂2t (λ) and ∇σ̂2
it(ψi) converge to the

unperturbed counterparts. In that case, the aforementioned perturbed recurrence equations depend on

the nonstationary sequences {f̂2t (λ)}t∈N and {σ̂2
it(ψ)}t∈N respectively.

As regards the derivatives in ∇f2t (λ), it is straightforward to see that the contraction condition

|β − α| < 1 stated in Assumption 4 will ensures that the perturbed derivatives converge e.a.s. to the

unperturbed counterparts, that is

sup
θ∈Θ
‖∇f̂2t (λ)−∇f2t (λ)‖ e.a.s.−−→ 0, as t→∞. (42)

On the other hand, for∇σ2
it(ψi), we obtain the desired convergence by showing that

sup
θ∈Θ
‖Âit(ψi)−Ait(ψi)‖

e.a.s.−−→ 0 as t→∞, (43)
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and

sup
θ∈Θ
‖ûit(ψi)− uit(ψi)‖

e.a.s.−−→ 0, and sup
θ∈Θ
‖âit(ψi)− ait(ψi)‖

e.a.s.−−→ 0. (44)

An application of the mean value theorem yields

sup
θ∈Θ
‖Âit(ψi)−Ait(ψi)‖ ≤ sup

θ∈Θ

∥∥∥∥∂Âit(ψi)∂σ2?
it

∥∥∥∥ sup
θ∈Θ
‖σ̂2

it(ψi)− σ2
it(ψi)‖, (45)

where σ2?
it is a point between σ̂2

it(ψi) and σ2
it(ψi), so that

∂Ait(ψi)

∂σ2?
it

= −2κi(νi + 1)(νi − 2)(x4it/f
4
t (λ))

[(νi − 2)σ2?
it + (x2it/f

2
t (λ))]3

,

which is uniformly bounded, in fact

sup
θ∈Θ

∥∥∥∥∂Âit(ψi)∂σ?2it

∥∥∥∥ ≤ sup
θ∈Θ

2κi(νi + 1)(νi − 2)‖b̂2t (1− b̂t)‖ <∞,

where b̂t is as in (27), and hence, bounded between 0 and 1. We then obtain the desired e.a.s. conver-

gence in (43) by an application of Lemma 2.1 in Straumann and Mikosch (2006), since as t → ∞ the

norm supθ∈Θ ‖σ̂2
it(ψi) − σ2

it(ψi)‖ vanishes by Proposition 3. With the same arguments it is possible

to show that the claimed convergence in (44) holds true. Thus, we get

sup
θ∈Θ
‖∇σ̂2

it(ψi)−∇σ2
it(ψi)‖

e.a.s.−−→ 0, as t→∞, (46)

and therefore, by combining the result obtained in (42) and (46), and recalling (37) the e.a.s. conver-

gence of the derivative processes follows.

A.8 Proof of Proposition 5

Proof. We note that

sup
θ∈Θ
‖∇(f2t (λ)σ2

it(ψi))‖ ≤ sup
θ∈Θ
‖∇f2t (λ)‖ sup

θ∈Θ
‖σ2

it(ψi)‖+ sup
θ∈Θ
‖f2t (λ)‖ sup

θ∈Θ
‖∇σ2

it(ψi)‖. (47)
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As the recursion for σ2
it(ψi) in equation (3), the derivatives in (39) together with the components (40)

and (41) are uniformly bounded and hence, we obtain arbitrary large number of bounded moments n′σ

by following closely the arguments of Proposition 2.

Specifically, let us consider the recursion

∇σ2
i,t+1(ψi) = Ait(ψi)∇σ2

it(ψi) + σ2
it(ψi)Sit(ψi), (48)

where

Sit(ψi) =

 1− 1/σ2
it(ψi)

uit(ψi)
κitait(ψi)

 .
Therefore, by recursive arguments and given the results in Propositions 3 and 4, we obtain

sup
θ∈Θ
‖∇σ2

i,t+1(ψi)‖ ≤ sup
θ∈Θ
‖Ait(ψi)‖ sup

θ∈Θ
‖∇σ2

it(ψi)‖+ sup
θ∈Θ
‖σ2

it(ψi)Sit(ψi)‖

≤ctA sup
θ∈Θ
‖∇σ2

i1(ψi)‖+

t−1∑
j=1

ct−jA sup
θ∈Θ
‖σ2

i,t−j(ψi)Sit(ψi)‖

≤
∞∑
j=1

ct−jA sup
θ∈Θ
‖σ2

i,t−j(ψi)Sit(ψi)‖,

where cA < 1 by the contraction condition in Assumption 4. Thus, the desired result now fol-

lows by noting that both σ2
it(ψi) and Sit(ψi) for i = 1, . . . , N are uniformly bounded and then

E[supθ∈Θ ‖∇σ2
i,t+1(ψi)‖n

′
σ ] <∞ for n′σ →∞.

Analogously, we define

∇f2t+1(λ) = (β − α)∇f2t (λ) + rt(λ), (49)

where

rt(λ) =

 1
1
N

∑N
i=1 x

2
it − f2t (λ)

f2t (λ),


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and hence, we obtain

sup
θ∈Θ
‖∇f2t+1(λ)‖ ≤cb sup

θ∈Θ
‖∇f2t (λ)‖+ sup

θ∈Θ
‖rt(λ)‖

≤ctb sup
θ∈Θ
‖∇f21 (λ)‖+

t−1∑
j=1

ct−jb sup
θ∈Θ
‖rt−j(λ)‖

≤
∞∑
j=1

ct−jb sup
θ∈Θ
‖rt−j(λ)‖,

with cb < 1 by the contraction condition in Assumption 4, giving us the arbitrary large n′f as a corollary

of Proposition 2.

In conclusion, taking into account (47) we get

sup
θ∈Θ
‖∇(f2t (λ)σ2

it(ψi))‖m′ ≤ sup
θ∈Θ
‖∇f2t (λ)‖n′

f
sup
θ∈Θ
‖σ2

it(λ)‖nσ

+ sup
θ∈Θ
‖f2t (λ)‖nf sup

θ∈Θ
‖∇σ2

it(λ)‖n′
σ
,

and by applying the generalized Hölder’s inequality yields the claimed number of bounded moments

m′ =
n′fnσ

nσ + n′f
+

nfn
′
σ

n′σ + nf
,

where m′ > 2.

A.9 Proof of Lemma 4.4

Proof. First, we note that for i = 1, . . . , N and t = 1, . . . , T ,

∇`it(λ,ψi) =
∂`it(λ,ψi)

∂(λ,ψi)
+

∂`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

∇(f2t (λ)σ2
it(ψi)). (50)

The first partial derivatives in equation (50) is a continuous function of strictly stationary and ergodic

processes and hence, by an application of the continuous mapping theorem for ∇`it(λ,ψi) we infer

that {∇`it(λ,ψi)}t∈Z is also stationary and ergodic.

Moreover, because {f2t (λ)σ2
it(ψi)}t∈Z and the derivative processes {∇(f2t (λ)σ2

it(ψi))}t∈Z are
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adapted to Ft−1 we have that

E
[
∇`it(λ,ψi)

∣∣∣∣Ft−1] = E
[
∂`it(λ,ψi)

∂(λ,ψi)

∣∣∣∣Ft−1]+ E
[

∂`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

∣∣∣∣Ft−1]∇(f2t (λ)σ2
it(ψi)).

The first term in the right hand side of (50) is

∂`it(λ,ψi)

∂νi
=

1

2

[
ψ

(
νi + 1

2

)
− ψ

(
νi
2

)
− 1

νi − 2
+
νi + 1

νi − 2
bit(θ)− log(1− bit(θ))

]
, (51)

while the second term is

∂`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

=
1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)bit(θ)− 1]. (52)

Hence, when θ = θ0 we just need to show that, by using the properties of the beta distributed random

variables

E[bit(θ0)|Ft−1] = 1/(νi0 + 1) and

E[log(1− bit(θ0))|Ft−1] = ψ(νi0/2)− ψ((νi0 + 1)/2),

thus, it is straightforward to see that for i = 1, . . . , N

E[∇`it(λ0,ψi0)|Ft−1] = 0.

Note also that this property entails the uniformly boundedness of (51) because bit(θ) is bounded be-

tween 0 and 1 for any θ ∈ Θ.

Therefore, we obtain the claimed second moment bound by noting that a combination of the Minkowski’s,

Hölder’s and the Jensen’s inequality yields

E
[∣∣∣∣∇`it(λ,ψi)∣∣∣∣2] ≤{(E[∣∣∣∣∂`it(λ,ψi)∂(λ,ψi)

∣∣∣∣2])1/2

+

(
E
[∣∣∣∣ ∂`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

∣∣∣∣4])1/4(
E
[∣∣∣∣∇(f2t (λ)σ2

it(ψi)).

∣∣∣∣4])1/4}2

<∞,

since, as noted above, the first term in the right hand side is in (51) and the second term is in (52)
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and both are uniformly bounded ∀xit ∈ R, and moreover from Assumptions 1, 2 and 3, we have that

f2t (λ) ≥ ω > 0 and σ2
it(ψi)) ≥ δi = (1− φi) > 0. The moment bounds of the third term are obtained

as an application of Proposition 5 by setting m′ = 4.

A.10 Proof of Lemma 4.5

Proof. The normality of the score function follows smoothly. The mean value theorem can be invoked

to highlights once more that the perturbations due to the starting values of every processes are negligible

as we go further in the direction of T .

Indeed,

sup
θ∈Θ
‖∇L̂NT (θ)−∇LNT (θ)‖

≤ sup
θ∈Θ

∥∥∥∥∥∥
∂L̂NT (θ)

∂(f̂2?
t (λ)σ̂2?

it (ψi))

∂2L̂NT (θ)
∂(f̂2?

t (λ)σ̂2?
it (ψi))

2

∥∥∥∥∥∥ sup
θ∈Θ

∥∥∥∥ (f̂2t (λ)σ̂2
it(ψi))− (f2t (λ)σ2

it(ψi))

∇(f̂2t (λ)σ̂2
it(ψi))−∇(f2t (λ)σ2

it(ψi))

∥∥∥∥ , (53)

where (f̂2?t (λ)σ̂2?
it (ψi)) lies between (f̂2t (λ)σ̂2

it(ψi)) and (f2t (λ)σ2
it(ψi)). We have already shown in

Theorem 4.3 that the first partial derivative in the first term of right hand side of the inequality in (53) is

uniformly bounded. Moreover, the second partial derivative is

∂2LNT (θ)

∂(f2t (λ)σ2
it(ψi))

2
=

1

NT

N∑
i=1

T∑
t=1

[
− 1

2(f2t (λ)σ2
it(ψi))

2
[(νi + 1)bit(θ)− 1]

− 1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)bit(θ)(1− bt(θ))]

]
,

which is uniformly bounded, while both the second term in the right hand side of the inequality in

(53) above converge almost surely exponentially fast to zero as shown in Propositions 3 and 4 respec-

tively. Hence, we satisfy the conditions of Lemma 2.1 in Straumann and Mikosch (2006) and we obtain

supθ∈Θ ‖∇L̂NT (θ)−∇LNT (θ)‖ a.s.−−→ 0 with N fixed and T →∞.

Therefore, the score function obeys the central limit theorem for martingales of Billingsley (1961),

since the existence of the covariance matrix V is entailed by Proposition 5. The claimed convergence

in distribution is achieved by appealing to Theorem 18.10 (iv) of van der Vaart (1998).
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A.11 Proof of Proposition 6

Proof. We have

∇2(f2t (λ)σ2
it(ψi)) = (∇2f2t (λ))σ2

it(ψi) + 2∇(f2t (λ)σ2
it(ψi)) + f2t (λ)(∇2σ2

it(ψi)), (54)

with∇2f2t (λ) composed by

∂2f2t+1(λ)

∂ω2
=(β − α)

∂2f2t (λ)

∂ω2
,

∂2f2t+1(λ)

∂α2
=(β − α)

∂2f2t (λ)

∂α2
− 2

∂f2t (λ)

∂α
,

∂2f2t+1(λ)

∂β2
=(β − α)

∂2f2t (λ)

∂β2
+ 2

∂f2t (λ)

∂β
, (55)

∂2f2t+1(λ)

∂α∂β
=(β − α)

∂2f2t (λ)

∂α∂β
+
∂f2t (λ)

∂2α
− ∂f2t (λ)

∂β
,

while for i = 1, . . . , N ,∇2σ2
it(ψi) is composed by

∂2σ2
i,t+1(ψi)

∂φ2i
=Ait(ψi)

∂2σ2
it(ψi)

∂φ2i
+
∂σ2

it(ψi)

∂φi
+ 1,

∂2σ2
i,t+1(ψi)

∂κ2i
=Ait(ψi)

∂2σ2
it(ψi)

∂κ2i
+ uit(ψi)

∂σ2
it(ψi)

∂κi
+ cit(ψi),

∂2σ2
i,t+1(ψi)

∂ν2i
=Ait(ψi)

∂2σ2
it(ψi)

∂ν2i
+ (κiait(ψi) + κieit(ψi))

∂σ2
it(ψi)

∂νi
+ κiσ

2
it(ψi)dit(ψi), (56)

∂2σ2
i,t+1(ψi)

∂φi∂κi
=Ait(ψi)

∂2σ2
it(ψi)

∂φi∂κi
+
∂σ2

i,t+1(ψi)

∂κi
+ cit(ψi),

∂2σ2
i,t+1(ψi)

∂φi∂νi
=Ait(ψi)

∂2σ2
it(ψi)

∂φi∂νi
+ κieit(ψi)

∂σ2
it(ψi)

∂φi
+
∂σ2

it(ψi)

∂νi
,

∂2σ2
i,t+1(ψi)

∂κi∂νi
=Ait(ψi)

∂2σ2
it(ψi)

∂κi∂νi
+ κieit(ψi)

∂σ2
it(ψi)

∂νi
+ uit(ψi)

∂σ2
it(ψi)

∂κi
+ σ2

it(ψi)qit(ψi),
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where

cit(ψi) =

(
(νi + 1)(x4it/f

4
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

− 1

)
,

dit(ψi) =

(
2σ2

it(ψi)(νi + 1)(x2it/f
2
t (λ))

[(νi − 2)σ4
it(ψi) + (x2it/f

2
t (λ))]3

− 2σ2
it(ψi)(x

2
it/f

2
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

)
, (57)

eit(ψi) =

(
(x4it/f

4
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

− 2σ2
it(ψi)(νi + 1)(x4it/f

4
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]3

)
,

qit(ψi) =

(
(x2it/f

2
t (λ))

(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))

− σ2
it(ψi)(νi + 1)(x2it/f

2
t (λ))

[(νi − 2)σ2
it(ψi) + (x2it/f

2
t (λ))]2

)
.

The expressions in (55) and (56) show that the contraction conditions |β−α| < 1 and E[log supσ2
i
‖Ait(ψi)‖] <

0 for the recursion filters {f̂t(λ)}t∈N and {σ̂2
it(ψi)}t∈N for i = 1, . . . , N stated in Proposition 3 are

the same for the perturbed second derivative processes {∇2f̂2t (λ)}t∈N and {∇2σ̂2
it(ψi)}t∈N. There-

fore, we note that the proof of Propositions 3 and 6 can be easily adapted since all the terms in (57)

are unifomly bounded with finite log-moments and therefore, there exist unique stationary and ergodic

solutions {∇2f2t (λ)}t∈Z and {∇2σ2
it(ψi)}t∈Z such that

sup
θ∈Θ
‖∇2f̂2t (λ)−∇2f2t (λ)‖ e.a.s.−−→ 0 and sup

θ∈Θ
‖∇2σ̂2

it(ψi)−∇2σ2
it(ψi)‖

e.a.s.−−→ 0.

Thus, by combining the latter result, the e.a.s. convergence obtained in Propositions 3 and 6, and

recalling (54), we conclude the proof.

A.12 Proof of Lemma 4.6

Proof. The first part of the proof follows the same arguments given in the proof of the consistency

Theorem 4.3. Then, we split the second derivatives of likelihood function as follows

sup
θ∈Θ
‖∇2L̂NT (θ)−∇2LN (θ)‖

≤ sup
θ∈Θ
‖∇2L̂NT (θ)−∇2LNT (θ)‖+ sup

θ∈Θ
‖∇2LNT (θ)−∇2LN (θ)‖. (58)
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To prove that the first term in the right hand side of (58) we note that

sup
θ∈Θ
‖∇2L̂NT (θ)−∇2LNT (θ)‖

≤ sup
θ∈Θ

∥∥∥∥∥∥∥∥∥
∂L̂NT (θ)

∂(f̂2?
t (λ)σ̂2?

it (ψi))

∂2L̂NT (θ)
∂(f̂2?

t (λ)σ̂2?
it (ψi))

2

∂3L̂NT (θ)
∂(f̂2?

t (λ)σ̂2?
it (ψi))

3

∥∥∥∥∥∥∥∥∥ sup
θ∈Θ

∥∥∥∥∥∥
(f̂2t (λ)σ̂it(ψi))− (f2t (λ)σit(ψi))

∇(f̂2t (λ)σ̂it(ψi))−∇(f2t (λ)σit(ψi))

∇2(f̂2t (λ)σ̂2
it(ψi))−∇2(f2t (λ)σ2

it(ψi))

∥∥∥∥∥∥ . (59)

where (f̂2?t (λ)σ̂2?
it (ψi)) lies between (f̂2t (λ)σ̂2

it(ψi)) and (f2t (λ)σ2
it(ψi)). We have already shown in

Theorem 4.3 and Lemma 4.5 that the first to partial derivatives in the first term of the right hand side of

equation (59) are uniformly bounded, with finite log-moments. As concern the third partial derivative,

we have

∂3L̂NT (θ)

∂(f̂2t (λ)σ̂2
it(ψi))

3
=

1

NT

N∑
i=1

T∑
t=1

[
1

2(f2t (λ)σ2
it(ψi))

4
[(νi + 1)bit(θ)− 1]

+
1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)bit(θ)(1− bt(θ))]

+
1

2(f2t (λ)σ2
it(ψi))

2
[(νi + 1)bit(θ)(1− bt(θ))]

+
1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)bit(θ)(1− bt(θ)2)]

− 1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)b2it(θ)(1− bt(θ))]

]
,

which is uniformly bounded, while all the terms in the right hand side of the inequality in (59) above

converge almost surely exponentially fast to zero as shown in Propositions 3, 4 and 6 respectively.

Hence, we satisfy the conditions of Lemma 2.1 in Straumann and Mikosch (2006) and we obtain

supθ∈Θ ‖∇2L̂NT (θ)−∇2LNT (θ)‖ a.s.−−→ 0 with N fixed and T →∞.

The second term in (58) will also vanish if the moment bound E[supθ∈Θ ‖∇2`it(λ,ψi)‖] < ∞ is

satisfied since {∇2LNT (θ)}t∈Z is stationary and ergodic.
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Now, for a single observation we note that

∇2`it(λ,ψi) =
∂2`it(λ,ψi)

∂(λ,ψi)∂(λ,ψi)
> +

∂`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

∇2(f2t (λ)σ2
it(ψi))

+∇(f2t (λ)σ2
it(ψi))(∇(f2t (λ)σ2

it(ψi)))
>. (60)

The components of the first term in (60) are

∂2`it(λ,ψi)

∂ν2i
=

1

4

[
ψ′
(
νi + 1

2

)
− ψ′

(
νi
2

)]
+

1

2

[
1

(νi − 2)2
− νi + 1

(νi − 2)2
bit(θ)(1− bit(θ))− 3

(νi − 2)
bit(θ)

]
, (61)

∂2`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))∂νi

=
1

2

[
bit(θ)− (νi + 1)bit(θ)(1− bit(θ))

]
, (62)

and finally

∂2`it(λ,ψi)

∂(f2t (λ)σ2
it(ψi))

2
=− 1

2(f2t (λ)σ2
it(ψi))

2
[(νi + 1)bit(θ)− 1]

− 1

2(f2t (λ)σ2
it(ψi))

[(νi + 1)bit(θ)(1− bt(θ))]. (63)

In line with previous arguments, we can easily check the uniformly boundedness of (61), (62) and (63).

Moreover, from Theorem 4.3 and Proposition 6 we already know that the components of the components

of the second term in (60) are uniformly bounded. In conclusion, the existence of the moment bounds

for the outer product E[supθ∈Θ ‖∇(f2t (λ)σ2
it(ψi))(∇(f2t (λ)σ2

it(ψi)))
>‖] is entailed in Proposition 5,

by requiring that m′ = 4.

Therefore, under maintained assumptions, the moment bound E[supθ∈Θ ‖∇2`it(λ,ψi)‖] < ∞ is

always satisfied.

A.13 Proof of Theorem 4.7

Proof. We discuss the proof for T → ∞. Standard arguments for the asymptotic normality proof and

the Taylor’s theorem, lead to the expansion of the conditional likelihood’s score around a neighbourhood

52



of θ0, which yields

0 =
√
NT∇LNT (θ̂T )

=
√
NT

[
∇L̂NT (θ0)−∇LNT (θ0)

]
+
√
NT∇LNT (θ0)

+
[(
∇2LNT (θ0)−∇2LN (θ0)

)
+
(
∇2L̂NT (θ?)−∇2LNT (θ0)

)
+∇2LN (θ0)

]
×
[√

NT (θ̂T − θ0)
]
, (64)

where θ? is on the cord between θ̂T and θ0, componentwise.

From the first line of (64), the convergence of the first difference in square brackets is obtained as

follows. Let us consider the expansion

√
NT‖∇L̂NT (θ0)−∇LNT (θ0)‖

≤
√
NT

∥∥∥∥∥∥
∂L̂NT (θ0)

∂(f̂2?
t (λ0)σ̂2?

it (ψi0))

∂2L̂NT (θ0)

∂(f̂2?
t (λ0)σ̂2?

it (ψi0))
2

∥∥∥∥∥∥
∥∥∥∥ (f̂2t (λ0)σ̂it(ψi0))− (f2t (λ0)σit(ψi0))

∇(f̂2t (λ0)σ̂it(ψi0))−∇(f2t (λ0)σit(ψi))

∥∥∥∥ , (65)

where (f̂2?t (λ)σ̂2?
it (ψi)) lies between (f̂2t (λ)σ̂2

it(ψi)) and (f2t (λ)σ2
it(ψi)). Now we note that under

maintained assumption, Propositions (3) and (4) imply that the terms in the second component of the

right hand side of (65) will vanish as T →∞. As concern the first component of the right hand side of

(65), we have already shown in Theorem 4.3 and Lemma 4.5 that the considered partial derivatives are

uniformly bounded and hence, we can write

‖∇L̂NT (θ0)−∇LNT (θ0)‖ ≤ Op(1)oe.a.s.(1) = oe.a.s.(1),

which implies that
√
NT‖∇L̂NT (θ0) − ∇LNT (θ0)‖ a.s.−−→ 0 as T → ∞, since N is fixed. There-

fore, since Lemma 4.5 entails the fact that
√
NT∇LNT (θ0) obeys the CLT for martingales, we obtain

that
√
NT∇L̂NT (θ0) has the same asymptotic distribution by the asymptotic equivalence lemma, see

Lemma 4.7 White (2001).

Now consider the second line of (64). Lemma 4.6 demonstrates that the initial conditions for likeli-

hood’s second derivatives are asymptotically irrelevant and the consistency theorem further ensures that
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the convergence in the same point by continuity arguments. In addition, the uniform law of large num-

bers guarantee that ‖∇2LNT (θ0) −∇2LN (θ0)‖ a.s.−−→ 0 as T → ∞, since N is fixed, see Lemma 4.6.

Thus, the nonsingularity of the limit ∇2LN (θ) is implied by the uniqueness of θ0 ∈ Θ as maximizer

of LN (θ), see Lemma 4.2 and then, we can solve the equation above. Finally, we apply the Slusky’s

Lemma (see Lemma 2.8 (iii) of van der Vaart (1998)) and complete the proof.
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