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ABSTRACT 16 

Through its atmospheric teleconnections, El Niño Southern Oscillation (ENSO) shifts 17 

and disrupts weather and climate patterns far beyond the equatorial Pacific where it 18 

occurs, and occasionally has catastrophic consequences in many countries of the world. 19 

It is also the largest source of seasonal and interannual climate predictability. Despite 20 

its huge importance, ENSO forecasting is still not performed operationally at longer 21 

leads than about 6 months ahead. At the same time, there is mounting scientific 22 

evidence that forecasts are possible even more than a year in advance. Early warning 23 

of  ENSO could substantially mitigate and help avoid some of the most damaging 24 

impacts, such as floods, droughts, harvest failure, famine, migration and disease 25 

outbreaks. Here, we present forecasts from a statistical ENSO model of the next El Niño 26 

predicted to occur in the winter of 2023/24, at lead times between 11 and 17 months 27 

ahead of an expected peak in December 2023. We use a statistical unobserved dynamic 28 

components model (EDCM) based on subsurface ocean temperatures as well as sea 29 

surface temperatures and zonal wind stress. EDCM has been previously validated 30 

through hindcasts of the major El Niños since 1970, and through real time forecasts of 31 

the 2015/16 and 2018/19 El Niños. Our statistical method and results indicate that there 32 

is potential for doubling the operational predictive lead time of ENSO to at least 12 33 

months, with additional promise for even earlier anticipation of 19 months. Such 34 

longer-lead forecasts could be of high value, because decision-making and management 35 

in a number of key socio-economic sectors could be greatly improved. 36 

SIGNIFICANCE STATEMENT 37 

We employ a statistical ENSO model and show early forecasting of the 2023 El Niño 38 

(EN). Early forecasts initiated in May and July 2022 predicted a mild EN. Forecasts 39 

initiated later, in November 2022 and January 2023, predicted a moderate  EN, with a 40 

strong event falling within the 70% confidence intervals. This work confirms that 41 

statistical long-lead ENSO forecasts are feasible, and should be developed further in 42 

advance  of the operational threshold of 6-8 months. Such forecasts are of high value 43 

for agriculture, water management, disaster reduction, public health and energy 44 

production in countries affected by ENSO.  More so, a strong EN could lead to a 45 

temporary breach of the 1.5°C threshold for global mean temperature increase set in 46 

the Paris Climate Agreement.  47 
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CAPSULE (BAMS ONLY) 48 

We predicted that El Niño will occur in the winter of 2023/24 at longer lead times 49 

(11-17 months in advance) compared to the operational forecasts of 6-8 months 50 

ahead.     51 

1. Introduction  52 

El Niño Southern Oscillation (ENSO) and its predictability is a subject of widespread 53 

scientific and societal interest, both because of its complexity as the dominant 54 

atmosphere-ocean coupled mode of climate variability (Wyrtki, 1975, Philander 1983), 55 

and its links to multiple climate hazards worldwide (Sarachik and Cane, 2010). A large 56 

number of ENSO prediction models have been described in the literature, and the 57 

operational ENSO forecasting plume includes contributions from many statistical and 58 

dynamical models (Barnston et al. 2012). Official forecasts are issued and reported 59 

regularly by the International Research Institute for Climate and Society Earth Institute 60 

(IRI, https://iri.columbia.edu/our-expertise/climate/enso/), and by the National 61 

Atmospheric and Oceanic Administration and the Climate Prediction Center  62 

(NOAA/CPC,https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_adv63 

isory/) about two seasons in advance. However, ENSO forecasting is currently not 64 

performed operationally at longer lead times (beyond 6 months in advance), despite the 65 

growing number of studies indicating that a longer predictability range is feasible (Cane 66 

et al. 1986; Goswami and Shukla 1991; Latif et al. 1998; Chen and Cane 2008; 67 

Wittenberg et al. 2014; Gonzalez and Goddard 2016; Luo et al. 2016; DiNezio et al. 68 

2017; Astudillo et al. 2017). Given that the ENSO forecasts are also the largest source 69 

of seasonal precipitation and temperature predictability for the Pacific and North 70 

Atlantic regions, North and South America, Australia, the Maritime Continent, and 71 

parts of Asia and Africa (Ropelewski and Halpert 1987, Rodó et al. 2006, Sarachik and 72 

Cane 2010, Kumar et al. 2017, L'Heureux et al. 2020), early anticipation through long-73 

lead forecasts could have huge economic, societal and health benefits that are currently  74 

underutilized.  75 

A handful of studies have already documented long-lead forecasts of past ENSO events 76 

(Latif et al. 1998; Chen et al. 2004; Luo et al. 2008; Izumo et al. 2010; Ludescher et al. 77 

2013, 2014; Petrova et al. 2017; Gonzalez and Goddard 2016; Ramesh et al. 2017; Luo 78 
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et al. 2017; Meng et al. 2020, Petrova et al. 2020), with the majority of these being 79 

based on dynamical models. In the 1980s and 1990s substantial efforts were made to 80 

implement a monitoring system within the Tropical Ocean Global Atmosphere (TOGA) 81 

Program, formed by a three-dimensional array that regularly samples the surface and 82 

subsurface temperature, salinity and circulation in the tropical Pacific, with the specific 83 

aim to understand the physical mechanisms of ENSO better, and to improve its 84 

prediction (McPhaden and Yu 1999). As a result, forecasts from dynamical models 85 

have significantly improved  since 1985. However, the majority of the operational 86 

statistical models do not utilize the more detailed subsurface information provided by 87 

the observation system, which could effectively help improve predictions further 88 

(Barnston et al. 2012). A novel dynamic components statistical ENSO model (EDCM) 89 

was developed and described by Petrova et al. 2017 and 2020 which, along with surface 90 

zonal wind stress and temperature, specifically samples subsurface temperature 91 

information from the western and central equatorial Pacific Ocean (WPAC and CPAC) 92 

to predict ENSO events at lead times beyond one year in advance. The EDCM has 93 

successfully hindcasted all major El Niños (EN) since 1970 at leads of up to about 2 94 

years in advance (Petrova et al. 2020), demonstrating that such predictive lead times 95 

are possible also for statistical models. Moreover, the last few EN, i.e. the 2014-2016, 96 

and the 2018-2020 events were predicted in operational forecasting mode (see Petrova 97 

et al. 2017, Lowe et al. 2017, Petrova et al. 2020, Petrova et al. 2021). These long-lead 98 

EN forecasts were used within a dengue fever incidence model for the city of Machala 99 

in Ecuador, to assess the probability of a dengue outbreak up to 11 months in advance 100 

(Lowe et al. 2017, Petrova et al. 2021). In this way, EDCM was not only tested in real-101 

time, but its potential to extend the forecast lead time of a climate-sensitive disease was 102 

also demonstrated.  103 

When the first ENSO forecasts became a reality in the second half of the 1980s, it also 104 

became obvious that such predictions could facilitate the generation of seasonal climate 105 

forecasts, as well as their application for practical uses (Buizer et al. 2009). ENSO 106 

associated droughts and flooding worldwide could be predicted some months in 107 

advance, and the hope was that these predictions could help, for example, vulnerable 108 

farming communities to prepare and plant more resilient crops, and governments to 109 

save precious resources when planning for response to natural hazards. Nowadays, 110 

many institutions around the globe (including IRI) tailor and provide climate 111 
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information and decision support systems on seasonal and interannual time scales to 112 

the agricultural, health, energy, insurance, disaster reduction and other sectors  of 113 

society impacted by climate variability and change. However, despite the immense 114 

practical utility of ENSO  forecasts, attempts to issue predictions at longer lead times, 115 

beyond the traditional 6 months in advance, have only been restricted to the scientific 116 

undertaking, and none are issued on an operational level yet.  117 

 118 

In the present study we use EDCM to perform in real-time statistical predictions of the 119 

temperatures in the eastern equatorial Pacific for the winter of 2023/24 at increasing 120 

lead times of up to 19 months in advance, and we investigate the potential of such longer 121 

lead forecasts in assisting the climate impact community, decision-makers around the 122 

world, and ultimately society, in alleviating the negative impacts of ENSO. We describe 123 

the predictors and the dynamic components of the model in Section 2. We summarize 124 

the ENSO forecasts in Section 3, and discuss the results and implications of these longer 125 

leads for climate impacts and services in Section 4.  126 

 127 

2. Methods 128 

Here we apply EDCM, the statistical ENSO time series prediction model, based on 129 

dynamic unobserved components derived from the decomposition of the Niño3.4 130 

temperature time series, and described in detail in Petrova et al. 2017 and 2020, to 131 

predict the monthly temperature in the Niño3.4 region ([5°N - 5°S]x[170° - 120°W]) 132 

for the 2023/24 boreal winter season. The model includes a trend component, a seasonal 133 

component, and three cyclical components with different frequencies and variances, as 134 

well as a number of regression (predictor) variables, and a noise term. Given that the 135 

model includes a trend component, a detrending of the Niño3.4 temperature and 136 

predictor time series is not necessary.  The trend, seasonal, and cycle components are 137 

represented as linear dynamic stochastic processes driven by disturbances (Harvey and 138 

Koopman 2000, Durbin and Koopman 2012). The cycle components are estimated with 139 

periods corresponding to near-annual (NA), quasi-biannual (QB) and quasi-quadrennial 140 

(QQ) frequencies, which are typical modes of ENSO variability discussed at length in 141 

the literature (see Petrova et al. 2017 and 2020 and the references therein). The signal 142 
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extraction of the different components, the likelihood evaluation, and the actual ENSO 143 

forecasting are achieved by means of the Kalman Filter (Kalman 1960). The statistical 144 

estimations and forecast method are implemented and carried out by the software 145 

packages STAMP and OxMetrics (Koopman et al. 2008 and 2010, Doornik 2013).  146 

Predictions are initiated at particular lead times with respect to December 2023 (as it is 147 

generally assumed that ENSO events peak around December). We look at predictive 148 

lead times beyond boreal spring, in order to test the skill of the model to overcome the 149 

well-known ENSO spring “predictability barrier” (Torrence and Webster 1998, 150 

Sarachik and Cane 2010). Therefore, forecasts are initiated between 11 and 19 months 151 

ahead of a presumed December 2023 ENSO peak, i.e. between the months of May 2022 152 

and January 2023. As discussed in detail in Petrova et al. 2017, EDCM makes use of 153 

different predictors at different lead times, ranging from subsurface temperature at 154 

different depth levels, sea surface temperatures (SST), as well as zonal wind stress 155 

(Supplementary Tables S1 and S2). These predictor indices (their time series) are based 156 

on the general progression of  a typical El Niño event (EN), and are extracted from 157 

predefined regions in the western and central equatorial Pacific (WPAC and CPAC; 158 

Petrova et al. 2017). Intensification of the trade winds and a subsurface heat buildup in 159 

the WPAC, and its slow subsurface migration towards the CPAC, along with westerly 160 

wind bursts at a later stage, are well-known to play a key role in the onset of El Niño 161 

events (Wyrtki 1985; Cane et al. 1986; Jin 1997; Clarke and Van Gorder 2003; 162 

McPhaden 2003, 2004; McPhaden et al. 2006; Ramesh and Murtugudde 2013; Ballester 163 

et al. 2015 and 2016a; Petrova et al. 2017). In this regard, EDCM benefits from 164 

available subsurface data to represent in detail these dynamical processes and their 165 

interactions. In addition to these predictor variables, we also use a previously identified 166 

SST dipole pattern in the extratropical South Pacific called the RossBell dipole (RB 167 

SST) as an ENSO predictor at a lead time of 11 months (i.e. for the forecast started in 168 

January 2023). The dipole was first defined in Ballester et al. 2011, and it represents a 169 

difference in SST warm and cold anomalies preceding EN events near the Ross and 170 

Bellingshousen Seas, respectively (over the boxes [65° - 50°S]x[180° - 160°W] and 171 

[65° - 50°S]x[100° - 80°W]). Its potential as an ENSO predictor at a lead time of 172 

between 7-11 months has been discussed therein and in Petrova et al. 2024. In particular 173 

RB peaks are followed by EN events approximately 9 months later. On the other hand, 174 

RB is anticipated by warming in the western equatorial Pacific about an year in 175 
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advance. Namely, the western equatorial surface warming triggers an intensification of 176 

the local convection and upper tropospheric divergence, generating an eastward and 177 

poleward propagating atmospheric wavetrain in the southern extratropics (Ballester et 178 

al. 2011, Cvijanovic et al. 2017). This wavetrain triggers the local SST anomalies that 179 

form the RB dipole in the south Pacific. RB has also been used to predict other EN 180 

events within EDCM such as the 2009/10 and the 2015/16 EN (not shown).   181 

For SST data we used the NOAA OISST V2 (Reynolds et al. 2002; 182 

http://www.emc.ncep.noaa.gov/research/cmb/sst_analysis/); for subsurface 183 

temperature data the Hadley Centre EN4.2.2 analyses data with the .g10 bias correction 184 

(Good et al. 2013, Gouretski and Reseghetti 2010, Gouretski and Cheng 2020); and for 185 

the calculation of zonal wind stress we used the NCEP-NCAR reanalysis wind data 186 

(Kalnay et al. 1996).  187 

 188 

 189 

3. Results 190 

a. Climate conditions in the tropical Pacific in 2022 and the beginning of 191 

2023 192 

Figure 1a shows the average SST anomalies for the months between July and October 193 

2022. Visible are the cold La Niña-related anomalies in the EPAC and CPAC, as well 194 

as a prominent warm anomaly in the North Pacific. Of interest here is the less intense, 195 

but significant warm anomaly (Supplementary Fig. 1a shows the standardized SST 196 

anomalies) in the far WPAC, extending south of the equator (selected by the red box). 197 

It has been shown previously that warm SST anomalies in this area typically precede 198 

El Niño events on average about 14-18 months in advance (Ballester et al. 2011 and 199 

2016a, Petrova et al. 2017). The region highlighted in the red box in Figure 1a is the 200 

region from which we extract SSTs to use as a predictor in EDCM. We highlight that 201 

the grid-point maximum  warm anomaly inside the box reaches ~2°C, and is located 202 

just to the south of the equator. The time series of this predictor index is shown in Figure 203 

1c. Since the index represents an average temperature value over the whole box, it 204 
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indicates a lower value than 2°C. The blue arrows highlight the warm anomaly peaks 205 

that preceded past EN events, and a peak is also highlighted in July-October of 2022.  206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 
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 221 

 222 

Fig. 1: Surface oceanic conditions in 2022 and the beginning of 2023 conducive to El Niño, 223 

and   SST time series of the predictors used in the EDCM model at lead times of 15 and 224 

11 months. a) and b) Sea surface temperature (SST) anomalies [ºC], c) SST anomalies 225 
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extracted from the box [10ºS-0º]x[140º-160ºE], d) RossBell SST index.  Red and black boxes 226 

in panels a-b include regions from which SST predictors have been extracted for EDCM at 227 

different lead times with respect to the winter 2023/24 peak season. Arrows in panels c-d  228 

indicate the time when a predictor is used for forecasting. “EN” labels indicate the time of peak 229 

El Niño conditions. Linear trend lines are included for the time series in panels c) and d) as 230 

grey solid lines. The period used to calculate a climatology is 1982-2022. 231 

  232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 
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            251 

 252 

 253 

 254 
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Fig. 2: Surface atmospheric conditions in 2022 and the beginning of 2023 255 

conducive to El Niño, and zonal wind stress time series of the predictors used in 256 

the EDCM model at lead times of 15 and 11 months. a) and b) Standardized zonal wind 257 

stress anomalies [standard deviation], c) zonal wind stress [N/m^2] extracted from the box [0º-258 

10ºN]x[160º-200ºE], d) zonal wind stress [N/m^2] extracted from the box [10ºS-0º]x[180º-259 

210ºE]. Red boxes in panels a-b include regions from which zonal wind stress predictors have 260 

been extracted for EDCM at different lead times with respect to the winter 2023/24 peak season. 261 

Arrows in panels c-d indicate the time when a predictor is used for forecasting. “EN” labels 262 

indicate the time of peak El Niño conditions. Linear trend lines are included for the time series 263 

in panels c) and d) as grey solid lines. The period used to calculate a climatology is 1982-264 

2022. 265 

 266 

 267 

 Similarly, Figure 1b shows the SST anomalies in January 2023, and the RB dipole    268 

feature in the South Pacific is captured by the red and black boxes. The boxes do not 269 

encompass the areas of the strongest warm and cold anomalies, but we note that these 270 

anomalies generally progress eastwards with the evolution of EN, and peak in the two 271 

boxed regions about 7-9 months before the ENSO peak (i.e. in the months of March-272 

May; Ballester et al. 2011). At the time of writing, the data is only available until 273 

January 2023, but it can be inferred from Figure 1b (Supplementary Fig. 1b) that the 274 

anomalies  may be better captured by our boxes in the months of March-May 2023, as 275 

a result of the general eastward propagation of these features (Ballester et al. 2011). 276 

The RB dipole time series is shown in Figure 1c and a prominent peak is also 277 

highlighted at the very end of the time series in January 2022.  278 

Standardized zonal wind stress anomalies in 2022 and the beginning of 2023 are 279 

depicted in Figure 2, panels  a and b. Panel  a shows that strong easterly wind anomalies 280 

occurred in the period between May and September of 2022, peaking in the far WPAC 281 

region, as well as south of the equator towards the CPAC and EPAC. Strong easterly 282 

wind anomalies at these locations precede EN events on average by about 15-20 months 283 

in advance. Although our red box does not include the entire area of strong trade wind 284 

anomalies, it does capture a significant portion of it. The zonal wind stress time series 285 

extracted from the box-marked region is shown in Figure 2c. A large trough indicative 286 
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of easterly wind bursts is highlighted in the autumn months of 2022, also signaling the 287 

potential for a forthcoming EN event. We note that the biggest troughs in Figure 2c are 288 

not always associated with EN events. The EDCM predictive framework includes other 289 

statistical criteria to pinpoint the lead time at which a given predictor is the most 290 

significant. In January of 2023 (Figure 2b) the extended warm SST anomalies in the 291 

WPAC region generated some westerly wind anomalies in the south, but also in the 292 

north off-equatorial regions in the CPAC, features that are typical about 7-11 months 293 

prior to EN events (Eisenman et al. 2005). The red box in Figure  2b captures some of 294 

these westerly wind burst anomalies. The time series of the predictor extracted from 295 

this box is shown in Figure 2d, and a peak associated with westerly wind bursts at the 296 

end of the time series in December-January 2022/23 is highlighted.  297 

Figure 3 depicts the subsurface temperature anomalies at different depths and in 298 

different months between May and October 2022, along with boxes from which 299 

predictors for EDCM were extracted. Strong warm anomalies in the WPAC are 300 

observed between 150-300 meters depth in May, July and September of 2022, which 301 

gradually progress eastward and are already stronger in the CPAC subsurface in 302 

October 2022 (Figure 3g). The subsurface temperature time series predictors extracted 303 

from the black boxes in Figure 3a and g are shown in Figure 3b and d, and the predictors 304 

used at 12 and 13 months leads are also shown in Figure 3f and h. As seen in all panels  305 

b, d, f and h of Figure 3, prominent and sustained positive peaks occur in all the time 306 

series of subsurface temperature anomalies from the spring to the winter months of 307 

2022. Such strong subsurface warm anomalies always precede EN events by on average 308 

10-20 months (McPhaden 2004, Ramesh and Murtugudde 2013, Petrova et al. 2017). 309 

Thus, climate conditions broadly spanning the spring, summer, autumn and winter 310 

months of 2022/23 are collectively prime for a forthcoming EN event in the winter of 311 

2023/24.  312 

 313 

 314 

 315 

 316 
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 317 

 318 
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     319 

Fig. 3: Subsurface oceanic conditions in 2022 conducive to El Niño, and subsurface 320 

temperature time series of the predictors used in the EDCM model at different 321 

lead times. a) Temperature anomalies at 150 meters depth in May 2022, b) time series of 322 

subsurface temperature at 150 meters depth extracted from the box [10ºS-5ºN]x[120º-140ºE], 323 

c) temperature anomalies at 300 meters depth in July 2022, d) time series of subsurface 324 

temperature at 150 meters depth  extracted from the box [7ºS-7ºN]x[150º-180ºE], e) 325 

temperature anomalies at 250 meters depth in September 2022, f) time series of subsurface 326 

temperature at 250 meters depth extracted from the box [7ºS-7ºN]x[140º-170ºE], g) 327 

temperature anomalies at 150 meters depth in October 2022.,  h) time series of subsurface 328 

temperature at 250 meters depth extracted from the box [7ºS-7ºN]x[120º-140ºE]. Black boxes 329 

in panels a, c, e and g indicate regions from which predictor time series for the model were 330 

extracted. Arrows in panels b, d, f and h indicate the time when a predictor is used for 331 

forecasting. “EN” labels indicate the time of peak El Niño conditions. Linear trend lines are 332 

included for the time series in panels b), d), f) and h) as solid grey lines. 333 

 334 

 335 

b. ENSO forecasts for  2023/24 336 

Figure 4 shows forecasts of SST anomalies in the Niño3.4 region initiated in January 337 

2023 (Figure 4a), September-December 2022 (Figure 4b-e), and July 2022 (Figure 4f), 338 

corresponding to leads from 11 to 17 months along with updated observations ( black 339 

solid line) until  June 2024. The observed Niño3.4 values point to a moderate-to-strong 340 

EN that  peaks in December 2023. All forecasts in Figure 4 predict an EN to mature in 341 

the winter of 2023/24 (Supplementary Table 3). Forecasts initiated  at lead times 342 

between 11-14 months foresee a  moderate warm event, but a larger EN of about 2°C 343 

amplitude is within the 70% confidence intervals of the predictions. The actual 344 

observed peak was 1.99°C. The forecast closest to this amplitude is the one issued 13 345 

months in advance predicting a peak of 1.20°C (Supplementary Table 3). Longer-lead 346 

forecasts initiated 15 to 19 months in advance (Figure 4e and f and Supplementary 347 

Figure 2a) predict a weak  EN for the winter of 2023/24. However, forecasts initiated 348 

22 and 24 months in advance of an assumed peak in December 2023 (i.e. in the months 349 
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of February 2022 and December 2021) do not predict an EN event, and show neutral 350 

conditions in the tropical Pacific instead (Supplementary Figure 2b and c), suggesting 351 

we reached a limit of feasible lead times. It is well-known especially for statistical 352 

ENSO models that the prediction of the amplitude of an event is harder and less accurate 353 

with the increase of the lead time (Barnston et al. 2012, Petrova et al. 2017, 2020 and 354 

references therein). Hence, predictions started so long in advance are likely to be 355 

incorrect, unless a very strong ENSO event is developing in the tropical Pacific. For 356 

example, in Figure 9e of Petrova et al. 2017 it can be seen that EDCM did not predict 357 

the weak 2014/15 EN at the very long lead times of 22-24 months, as opposed to Figure 358 

4 in Petrova et al. 2020, where all strong EN events are successfully predicted even at 359 

the longer leads of 21 and 29 months in advance, albeit with a smaller amplitude than 360 

observed. We also highlight that EDCM makes use of different predictors at different 361 

lead times, and it could happen that a given predictor affected the forecast more/less 362 

strongly, and this could directly impact the amplitude of the predicted event. This could 363 

explain why EDCM predicted a higher amplitude event at 13 months, as opposed to 11 364 

or 12 months lead time. We have seen a similar situation with the prediction of the 365 

1997/98 EN for example (see Figure 9a and 9f  in Petrova et al. 2017, where the 366 

amplitude of the event is better predicted at the very long lead times as opposed to the 367 

medium lead times). Additionally, a deterioration of the forecast precision is observed 368 

when predictions are initiated closer to the “spring predictability barrier” due to the 369 

general decrease of the signal-to-noise ratio, hence, the lower amplitudes predicted at 370 

11 and 12 months lead time. However, the forecasted amplitudes at these leads are still 371 

greater than those predicted beyond 13 months in advance. Finally, here we used the 372 

version of EDCM that features a fixed seasonal cycle, which could explain the delay 373 

by a couple of months in the predicted peaks at all lead times (see Petrova et al. 2017 374 

for more details on this issue). 375 

 376 

 377 

 378 

 379 
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 380 

        381 

 382 

 383 
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             384 

Fig. 4: Forecasts of the 2023/24 temperature anomalies [ºC] in the Niño3.4 region. Forecast 385 

started in a) January 2023, b) December 2022, c) November 2022, d) October 2022, e) 386 

September 2022, f) July 2022. In all panels the thick black line is the observations (shown until 387 
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June 2024), the red line is the forecast, the blue dash-and-dotted lines are the 70% confidence 388 

intervals, and the black dotted lines are the -0.5ºC and +0.5ºC  threshold for La Niña and El 389 

Niño, respectively.  390 

 391 

 392 

4. Discussion and Conclusions 393 

ENSO is the principal driver of climate variability, and has the potential to trigger 394 

weather- and climate-related natural and societal disasters worldwide. Climate 395 

vulnerability and the socio-economic consequences in regions where ENSO 396 

teleconnections are especially strong could be substantially reduced with the evolution 397 

of ENSO forecasts, and society has a lot to gain if ENSO predictions can be extended 398 

beyond the current operational limit of 6 months in advance. During the last several 399 

years we have designed, tested and improved  EDCM, an ENSO statistical forecasting 400 

model (Petrova et al. 2017 and 2020), with the overarching goal to expand ENSO 401 

statistical predictions to at least one year ahead of the mature phase, and test the 402 

potential for even longer lead times. We were successful in hindcasting the major EN 403 

events (the 1972/73, 1982/83, 1986/87, 1997/98, 2009/10 and 2015/16 ENs) 1.5 years 404 

in advance, in some cases even 2.5 years ahead (Petrova et al. 2020). Here we showcase 405 

our forecast for the winter of 2023/24, indicating that already in October of 2022 (14 406 

months ahead of a presumed ENSO peak in December 2023) it was possible to foresee 407 

a moderate to strong EN development in the tropical Pacific. Moreover, the model 408 

predicts the return of EN even for forecasts initiated 17 and 19 months ahead (i.e. in 409 

July and May of 2022, respectively), albeit the predicted amplitudes are for a much 410 

weaker warm event (Figure 4f and Supplementary Figure 2a).  411 

Climate conditions in the tropical Pacific in spring-winter of 2022 were also compatible 412 

with the early onset and evolution of a warm event (Figures 1, 2 and 3), as surface 413 

temperature, zonal wind stress and subsurface temperature anomalies are all consistent 414 

with the EN preceding composite anomalies (see also Figures 6 and 7 of Petrova et al. 415 

2017). It is interesting to note that Figures 2c and d show a decreasing trend in the zonal 416 

wind stress time series, corresponding to overall strengthening of the easterly trade 417 

winds and the Walker Circulation in the last five years (from 2018-2023). This recently 418 
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observed trend change and strengthening of the zonal atmospheric circulation in the 419 

tropical Pacific, along with an enhanced warming in the WPAC region (also seen in all 420 

the time series extracted from the subsurface ocean in the WPAC in Figure 3b, d, f and 421 

h) are generally in conflict with the CMIP5 and CMIP6 climate projections for a unified 422 

warming in the equatorial Pacific, and a weakening of the Walker cell (DiNezio et al. 423 

2013, Kociuba et al. 2015). The strengthening of the Walker circulation in recent 424 

observations has also been linked by Heede and Fedorov 2021 and 2023 to global 425 

warming as opposed to natural climate variability proposed by earlier studies 426 

(McGregor et al. 2018, Watanabe et al. 2020). 427 

The QB and QQ modes of ENSO variability, corresponding to some of the EDCM 428 

dynamic cyclical components (along with a near annual component), are also in their 429 

growing phases in 2023 (Figure 5), signaling the high probability for an EN to occur. 430 

In Figure 5 we have extended idealized versions of these oscillatory modes, along with 431 

a decadal cycle corresponding to decadal ENSO variability (Petrova et al. 2020). These 432 

cyclical components are time-varying in the model, and their frequency and amplitude 433 

parameters can shift with changes in the overall climatic conditions, and as a result of 434 

atmospheric noise. However, we can see that in the 2023/24 winter season the idealized 435 

versions of the 2-year (QB), 4-year and 5-year cycles (QQ) are all in their peak phases. 436 

In fact, a similar superposition of these cycles occurred in 1997/98, when one of the 437 

biggest EN on record developed, despite the fact that the decadal cycle was at its trough, 438 

as it is also in 2023. 439 

  440 

 441 

 442 

 443 

 444 

 445 

 446 
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 447 

 448 

     Fig. 5: Schematic of idealized oscillatory models involved in ENSO variability. Shown 449 

are cycles of periodicities corresponding to a) 2 (dashed green) and 4 (solid beige) years, b) 450 

(dashed magenta) and 12 (solid black) years. Peak months of El Niño (pink lines) and La Niña 451 

(light blue lines) from the observations are indicated. The dark pink dash-dotted line indicates 452 

the forecasted El Niño at the end of 2023. Wave amplitudes are not realistic.   453 

 454 

      455 

    For the 2023/24 winter season, our long-term predictions of 11 to 14 months in 456 

advance all suggest moderate-to-strong EN developing in the Pacific. This is a 457 
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substantially longer lead time than currently used in operational forecasts. For longer 458 

15 to 19 months lead-times, our forecasts still suggest EN development in 2023/24, 459 

albeit of weaker amplitude (Fig. 4 and Supplementary Fig. 2). Beyond these lead times, 460 

predictions initiated 22 and 24 months in advance suggested neutral conditions instead 461 

of an EN, despite the CI indicated that moderate EN conditions were possible 462 

(Supplementary Fig. 2). These results illustrate strong potential for expanding the 463 

statistical operational ENSO forecasts to 12 and 18 months in advance. Despite the fact 464 

that longer 22 and 24 months forecasts were not feasible at this instance, our success in 465 

predicting some of the previous ENSO events 2-2.5 years in advance (i.e. the 1997/98, 466 

2002/03, 2009/10, 2015/16 ENs, See Petrova et al. 2017 and 2020), suggests that  early 467 

ENSO forecasting is an avenue worth exploring further. 468 

ENSO predictions are still constrained by the lack of complete physical understanding,  469 

parametrization of key dynamical processes, and by initialization errors due to 470 

imperfect data assimilation in the case of dynamical models, as well as by the lack of 471 

long atmospheric and oceanic historical data in the case of statistical models, in addition 472 

to the uncertainties arising from atmospheric noise (including the so-called spring 473 

barrier), and natural climate variability (Wittenberg 2009, Barnston et al. 2012, Fedorov 474 

et al. 2015). Nonetheless, this study adds to previous ones (Chen et al. 2004; Luo et al. 475 

2008; Izumo et al. 2010; Ludescher et al. 2013, 2014; Petrova et al. 2017; Gonzalez and 476 

Goddard 2016; Ramesh et al. 2017; Luo et al. 2017; Meng et al. 2020, Petrova et al. 477 

2020) in voicing the potential of early ENSO predictions, and call for a reconsideration 478 

and an increase of the official lead time at which operational ENSO forecasting is 479 

performed. 480 

Clearly, the information provided by longer lead forecasts is more specific, associated 481 

with more uncertainty, and hence, suited to more specialized applications. In other 482 

words, the longer lead forecasts indicate what is more likely to happen, but are far from 483 

precise. For this reason, it is useful to explore the potential requirements of decision 484 

makers, and tailor the information provided by longer lead ENSO forecasts to those 485 

needs. For example, in health impact assessment infectious disease predictions at longer 486 

lead times based on ENSO information for diseases such as dengue and malaria could 487 

serve for saving resources and for devising optimized intervention plans to control 488 

vector infestations, and help reduce mosquito breeding sites, ultimately lowering the 489 
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burden of disease and saving lives. In the area of energy production, ENSO has 490 

considerable impact on hydropower, wind power and biomass production, especially in 491 

the more affected areas in the Northwest US, South America, Central America, the 492 

Iberian Peninsula, Southeast Asia and Southeast Australia (Ng et al. 2017). The large 493 

share of hydropower electricity supply in some of these locations means that an ENSO 494 

resilient renewable energy supply will become increasingly important, and the sector 495 

would greatly benefit from long-term ENSO forecasting for a mid-term adjustment of 496 

the energy mix. Some of these systems could be adapted to apply such longer lead 497 

climate information in a probabilistic framework, so that resources could indeed be 498 

optimized, and risks properly estimated on a tailored cost-benefit basis, especially in 499 

less affluent countries and more vulnerable populations. In others the added value of 500 

knowledge so long in advance could be limited for mitigating risks related to climate 501 

variability and extremes. Therefore, such predictions should be promoted to relevant 502 

sectors in a sustainable and targeted way. 503 

Given these considerations, it is vital to establish an operational structural framework 504 

for the issuing of such longer lead ENSO forecasts that is also based on local needs and 505 

demands. This role could be taken again by the IRI/CPC, and  an additional forecasting 506 

plume could be released on a regular basis, including only models tailored for longer 507 

lead forecasts, along with a consensus ENSO outlook at a lead time of at least 1 year 508 

ahead.  509 

In conclusion, we want to stress that ENSO forecasting has advanced to a point when 510 

useful and reliable annual timescale forecasts can be made regularly. Our results here 511 

indicated early on (already in July 2022) that an EN event was expected to mature in 512 

the winter of 2023/24. The event was predicted to be most likely  moderate or strong, 513 

but in both cases the expected deviation in the global mean surface temperature as a 514 

result of the release of heat from the equatorial Pacific Ocean to the atmosphere is 515 

expected to be on the order of about 0.1°C or more (Christy and McNider 1994, Wigley 516 

2000). Therefore, 2024 could become the next warmest year on record, and there is  517 

some likelihood that the mean increase of 1.5°C with respect to pre-industrial 518 

temperature levels set as a threshold in the Paris Climate Agreement (Christoff 2016) 519 

could be temporarily breached in the next  year, should a stronger El Niño mature in 520 

the eastern tropical Pacific. 521 
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