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approach for analysis and forecasting. The updating of the covariance matrix relies on the

score function of the joint likelihood function based on Gaussian and Wishart densities. The

dynamic model is parsimonious while the analysis relies on straightforward computations.

In a Monte Carlo study we show that parameters are estimated accurately for different
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1 Introduction

Modeling conditional dependency structure of financial assets through time-varying covariance

matrices is typically based on multivariate extensions of generalized autoregressive conditional

heteroskedasticity (GARCH) models and stochastic volatility (SV) models for daily returns.

These classes of models aim to extract time-varying covariance matrices from vector time series

of financial returns. The dynamic process for multivariate volatility (variances, covariances and

correlations) is typically specified as a vector autoregressive moving average process. Various

multivariate GARCH and SV models have been developed and applied in recent years. For

a comprehensive overview of multivariate GARCH models, we refer to Bauwens et al. (2006),

Silvennoinen and Teräsvirta (2009) and Anudrino and Trojani (2011). Reviews of multivariate

SV models are provided by Asai et al. (2006) and Jungbacker and Koopman (2006). These

developments in financial econometrics are also related with the theoretical developments in

finance and in particular with the literature on option pricing, optimal portfolio modeling, and

term structure modeling. For example, Driessen et al. (2009) investigate individual volatility

risk premia differences (typically in relation to a portfolio or index) and they explain them by

a high correlation risk premium. More recently, the study of Buraschi et al. (2017) focuses on

a priced disagreement risk that explains returns of option volatility and correlation in trading

strategies. In all such studies, the multivariate GARCH and SV models for volatilities and

correlations in multiple asset returns (possibly within a portfolio) are of key importance.

The main shortcoming of traditional multivariate GARCH and SV models is that they solely

rely on daily returns to infer the current level of multivariate volatility. Given the increasing

availability of high-frequency intra-day data for a vast range of financial assets, the use of only

low-frequency daily data appears inefficient for making statistical inference on time-varying

multivariate volatility. One important consequence is that models based on daily data do not

adapt quickly enough to changes in volatilities which is key to track the financial risk in a

timely manner; see Andersen et al. (2003) for a more detailed discussion. The relevance of

these issues in the context of discrete volatility models, possibly with leverage effects, and their

relations to option pricing models have been discussed and reviewed recently in Khrapov and

Renault (2016). Various attempts have been made to use high-frequency intra-day data into the

modeling and analysis of volatility. For instance, information from high-frequency data can be

incorporated by adding it in the form of an explanatory variable to the GARCH or SV volatility

dynamics; see Engle (2002b) and Koopman et al. (2005).
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With the advent of high-frequency data, one can estimate ex-post daily return variation with

so-called realized variance (or realized volatility) measures; see Andersen and Bollerslev (1998),

Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002). Inherent to high-frequency

data is the microstructure noise (bid-ask bounce, decimal misplacement etc.) which leads to bias

and inconsistency of standard measures. A number of related measures have been developed

to restore the consistency; see Aït-Sahalia et al. (2005), Barndorff-Nielsen et al. (2008), Jacod

et al. (2009), Hansen and Horel (2009), and references therein. In the case of multiple assets,

realized measures of asset covariance have also been proposed and considered; see Christensen

et al. (2010), Barndorff-Nielsen et al. (2011a), Griffin and Oomen (2011), and references therein.

Andersen et al. (2001) have explored the use of autoregressive models to analyze time series

of realized volatilities. They have found considerable improvements in volatility forecasts over

standard GARCH models. More recently, some new promising models have been proposed that

rely on time series of realized measures. Gourieroux et al. (2009) have proposed (non-central)

Wishart autoregressive model for realized covariance matrix. Asai and So (2013) and Golosnoy

et al. (2012) have proposed alternative dynamic formulation for covariance parameters with

the underlying Wishart distribution. Chiriac and Voev (2011) and Bauer and Vorkink (2011)

have proposed models for realized covariances using appropriate transformations to ensure the

positive definiteness of the covariance matrix. In our study we also rely on the Wishart distri-

bution but we propose a novel conditional model formulation for the covariance matrix. For

the updating of the conditional covariance matrix, we use daily as well as intra-daily financial

returns.

An approach that combines possibly several measures of volatility based on low- and high-

frequency data is recently proposed by Engle and Gallo (2006). They model jointly close-to-

close returns, range and realized variance with the multiplicative error model (MEM) where

each measure has its own dynamics for the update of latent volatility augmented with lagged

values of other two measures. Engle and Gallo (2006) find that combination of these three noisy

measures of volatility brings gains when making medium-run volatility forecasts. Shephard and

Sheppard (2010) explore a similar model structure and refer to it as the HEAVY model, which

was extended to the multivariate setting in Noureldin et al. (2012). Then a further extension

based on the use of more heavy-tailed distributions is proposed by Opschoor et al. (2017). In

the aforementioned models, a time-varying parameter is introduced for every realized measure

that is included in the model. An alternative approach is the Realized GARCH framework by
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Hansen et al. (2012) where daily returns and realized measures of volatility are both associated

with the same latent volatility which circumvents the need for additional latent variables. The

Realized GARCH framework has been developed further in Hansen et al. (2014). A Realized SV

model is proposed by Koopman and Scharth (2013). Our present work introduces an extension

of the Realized GARCH model to the multivariate case and the use of a score-driven framework

for the time-varying conditional covariance matrix.

Our primary aim is to specify a model for the daily time-varying covariance matrix and

to extract it by using both low- and high-frequency data. For this purpose we propose a

specification for the unobserved daily covariance matrix as a function of realized measures of

daily covariance matrices and past outer-products of daily return vectors. The challenge is

to suitably weight these different variance and covariance signals. For this purpose, we adopt

the score-driven framework of Creal et al. (2013). Our joint modeling framework relies on a

Wishart distribution for realized covariance matrices and on a Gaussian distribution for vectors

of daily returns. The updating of the time-varying covariance matrix is driven by the scaled

score of the predictive joint likelihood function; Blasques et al. (2015) have argued that such

updating is locally optimal in a Kullback-Leibler sense. The score function turns out to be a

weighted combination of the outer-product of daily returns and the actual realized measures;

the weighting relies on the number of degrees of freedom in the Wishart distribution. We refer

to our resulting model as the Realized-Wishart-GARCH model.

In our empirical illustration for a portfolio of 15 U.S. financial assets, the parameter estimates

imply that the realized measures receive more weight than the outer-product of the vector of

daily returns. We confirm that the realized measure is a more accurate measure of the covariance

matrix as it exploits intra-day high-frequency data. In an out-of-sample study we show that

our modeling framework can lead to accuracy improvements in forecasting, especially those for

the density in daily returns.

The remainder of the paper is organized as follows. In Section 2, we introduce the Realized-

Wishart-GARCH model for multivariate conditional volatility. In Section 3, we conduct a

Monte Carlo study to verify the performance of likelihood-based estimation. Section 4 presents

the results of our in-sample and out-of-sample empirical study for a portfolio of fifteen NYSE

equities. It includes a thorough forecasting comparison of our model against several other

competitive models and methods. Section 5 concludes. The Appendices provide some matrix

algebra results, proofs of the main results and additional estimation results.
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2 The Realized-Wishart-GARCH Model

The development of our model for the time-varying conditional covariance matrix starts with

the assumption that for each trading day and for a selection of assets, we have a data vector

of daily returns and a measure (or possibly several measures) of the daily realized covariance

matrix. We build a model for these data sources and implicitly use both low- and high-frequency

data. The proposed structure of the model permits the use of several realized measures that are

based on different sampling frequencies. In this section we discuss our modeling assumptions.

We then describe the modeling strategy and we provide technical details of our new model for

multivariate conditional volatility. Some matrix notation and preliminary results are presented

in Appendix A and proofs are collected in Appendix B.

2.1 Modeling assumptions

Let rt ∈ Rk denote a k × 1 vector of daily (demeaned) log returns for k assets and let the

Xt ∈ Rk×k denote a k×k realized covariance matrix of k assets on day t, with t = 1, . . . , T . Let

Ft−1 be the sigma field generated by the past values of rt and Xt, that is Ft−1 = σ(rs, Xs; s =

1, . . . , t− 1). We assume the following conditional densities

rt|Ft−1 ∼ Nk(0, Ht), (1)

Xt|Ft−1 ∼ Wk(Vt/ν, ν), (2)

with non-singular k×k covariance matrix Ht of the zero-mean multivariate normal distribution

Nk(0, Ht) and non-singular k × k covariance matrix Vt as the mean of the k-th dimensional

Wishart distribution Wk(Vt/ν, ν) with degrees of freedom ν ≥ k. The covariance matrices Ht

and Vt are both measurable with respect to Ft−1. The variables rt and Xt in (1) and (2) are

conditionally independent of each other. The (unconditional) dependence between rt and Xt is

assumed to rely only on the dependence between Ht and Vt. The coefficient ν encapsulates the

precision by which Xt measures Vt. A larger value of ν implies a more accurate measurement

Xt for Vt.

The normal density function for rt|Ft−1 is given by

1

(2π)
k
2 |Ht|

1
2

exp

{
− 1

2
tr
(
H−1t rtr

′
t

)}
, (3)
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and the density function of the k-variate standard Wishart distribution for Xt|Ft−1 is given by

|Xt|(ν−k−1)/2

2(νk)/2ν−(νk)/2|Vt|ν/2Γk
(
ν
2

)exp

{
− ν

2
tr
(
V −1t Xt

)}
, (4)

with multivariate Gamma function Γk (a) = π
k(k−1)

4
∏k
i=1 Γ (a+ (1− i)/2) for any a > 0. The

measurement equations can be formally given by

rt|Ft−1 = H
1/2
t εt, Xt|Ft−1 = V

1/2
t ηtV

1/2
t , (5)

where A1/2 denotes the square root matrix of A and where the measurement innovations are

assumed to be, mutually and serially, identically and independently distributed (iid) random

variables, that is

εt ∼ Nk(0, Ik), ηt ∼Wk(Ik / ν, ν),

with k × 1 random vector εt and k × k random matrix ηt with property E(εt η
′
s) = 0, for

t, s = 1, . . . , T .

We assume that realized covariance Xt is available on each day t as it can be measured

consistently by the multivariate realized kernel of Barndorff-Nielsen et al. (2011a) or related

measures described by Griffin and Oomen (2011). The distributional assumption (1) implies

that the outer product of the daily returns vector is distributed as

rtr
′
t|Ft−1 ∼W s

k (Ht, 1), (6)

where W s
k (Ht, 1) is the Singular Wishart distribution with mean Ht and one degree of freedom,

see Uhlig (1994) and Srivastava (2003). We notice that the covariance matrix Ht is non-singular;

the distinctive feature of the Singular Wishart is that ν < k and in (6) we have ν = 1 while for

the Wishart we have ν > k. Given the specification in (6), we can formulate the measurement

equations alternatively as

rtr
′
t|Ft−1 = H

1/2
t ζtH

1/2
t , Xt|Ft−1 = V

1/2
t ηtV

1/2
t ,

with ζt ∼ W s
k (Ik, 1), and where ζt and ηt are, serially and mutually, iid processes of k × k

stochastic matrices. In this representation, the measurement equations are expressed in terms

of variances and covariances.
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The developments in our study are based on the assumption that the conditional covariance

matrix of (daily) returns and the conditional mean of the realized covariance matrix share the

same dynamic processes. Specifically, we let the covariance matrix Ht to be fully dependent on

Vt, and vice-versa, that is

Ht = ΛVtΛ
′, (7)

where Λ = (λij) is a k × k non-singular matrix. Due to the quadratic form in (7), a sign

restriction on Λ needs to be imposed to ensure identifiability. For this purpose, we impose the

sign restriction λ11 > 0. The specific role and economic interpretation of Λ depends on whether

daily returns are computed as close-to-close or open-to-close; we refer to the empirical study for

a discussion. Our model specification implies that the conditional statistical properties of the

measurements can be expressed in terms of Vt and Λ, that is

E[rtr
′
t|Ft−1] = ΛVtΛ

′, E[Xt|Ft−1] = Vt, (8)

Var[vec(rtr
′
t)|Ft−1] = (Ik2 +Kk)

(
Λ⊗ Λ

)(
Vt ⊗ Vt

)(
Λ′ ⊗ Λ′

)
, (9)

Var[vec(Λ−1rtr
′
t(Λ
′)−1)|Ft−1] = (Ik2 +Kk)

(
Vt ⊗ Vt

)
, (10)

Var[vec(Xt)|Ft−1] = ν−1(Ik2 +Kk)
(
Vt ⊗ Vt

)
, (11)

where Kk is the k2 × k2 commutation matrix as discussed in detail in Magnus and Neudecker

(1979) from which also the results of (9) and (11) follow directly. The result in (8) corresponds

to the conditional second moment, while the results in (9) and (10) correspond to the conditional

fourth moment (kurtosis) of returns. It is a convenient feature of our modeling framework that

conditional second moments of realized covariance (11) provides model-implied volatilities-of-

volatilities and volatility cross-asset effects (also known as spill-over effects).

We introduce the time-varying vector process ft for which the details of its dynamic model

specification are given below. We assume that Vt is a function of ft, that is Vt = Vt(ft) for

t = 1, . . . , T . This flexible specification can accommodate a covariance matrix Vt that is only

partly time-varying. But it can also allow for specifications that lead to a fully time-varying

matrix Vt. In our study we consider the specification ft = vech(Vt) where the operator vech(Vt)

stacks the diagonal and lower-triangular elements of the covariance matrix Vt into a vector.
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2.2 Score-driven dynamics

In this section we discuss how the dynamic properties of the time-varying parameter ft can be

specified. We provide details of how the model formulation is derived taking into account the

measurement densities that are introduced in the previous section. We adopt the score-driven

approach to time-varying parameters as developed by Creal et al. (2013). They construct

a general dynamic modeling framework in which the local score function (at time t) of the

conditional or predictive likelihood function is used for updating time-varying parameters. Given

that the conditional score function is a function of past observations, the model belongs to the

class of observation-driven models; see Cox (1981).

Consider the set Zt consisting of m vector or matrix variables, we have Zt =
{
Z1
t , . . . , Z

m
t

}
,

for which observations or measurements are available for t = 1, . . . , T . For our Realized-Wishart-

GARCH model, we have m = 2, Z1
t = rtr

′
t and Z2

t = Xt. It is a straightforward extension to

include more variables into Zt, such as other realized measures that can possibly provide more

information on Vt = Vt(ft). The measurement distribution for the ith variable in Zt is given by

Zit ∼ ϕi(Zit |ft,Ft−1;ψ), i = 1, . . . ,m, t = 1, . . . , T, (12)

where ft is the d × 1 vector of time-varying parameters, Ft−1 = σ(Zs; s = 1, . . . , t − 1) is the

sigma field generated by all observations up to time t− 1, and ψ is a vector of (unknown) static

model parameters. In this framework, the individual distribution ϕi may correspond to different

families of distributions. All distributions however depend partially on the same time-varying

parameter vector ft. For our Realized-Wishart-GARCH model with conditional distributions

(1) and (2), and with specification (7), return vector rt and realized covariance matrix Xt

have different distributions but are assumed to be propelled by the common covariance matrix

Vt = Vt(ft). Finally, the distribution ϕi in (12) may depend on exogenous variables; we omit

this extension for simplicity in notation.

We assume that the m variables in Zt are conditionally independent, conditional on both

ft and the information set Ft−1. We further assume that the distributional functions ϕi are at

least differentiable up to the first order with respect to ft. The log-likelihood function is then

given by

L(ψ) =

T∑
t=1

m∑
i=1

log ϕi(Z
i
t |ft,Ft−1;ψ). (13)
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The time-varying parameter ft is updated via the recursive equation

ft+1 = ω +

p∑
i=1

Bift−i+1 +

q∑
j=1

Ajst−j+1, (14)

where ω is an d×1 vector of constants, st is a mean-zero and finite variance martingale difference

sequence, Bi and Aj are d×dmatrices of coefficients. The unknown parameters in ω, B1, . . . , Bp,

A1, . . . , Aq and those associated with the measurement equations, such as the number of degrees

of freedom in the Wishart distribution, are collected in the static parameter vector ψ. The

vector autoregressive moving average representation (14) proves convenient for understanding

the statistical dynamic properties of the ft process but also for parameter estimation. The

specification (14) can be extended to incorporate some exogenous variables or other functions

of lagged endogenous variables, or one could also consider long-memory specification of (14).

Given the linear updating in (14), the main challenge is to formulate the martingale inno-

vation st. Here we adopt an observation-driven approach in which we formulate the innovation

term st as a function of directly observable variables. Our modeling approach follows Creal

et al. (2013) by setting the innovation st equal to the scaled score of the predictive likelihood

function. Under the assumption of correct model specification, the score has the convenient

property that it forms a martingale difference sequence. In particular, the score vector takes an

additive form given by

∇t =
m∑
i=1

∇i,t =
m∑
i=1

∂ log ϕi(Z
i
t |ft,Ft−1;ψ)

∂ft
, (15)

which corresponds to the sum of individual scores. The existence of ∇t relies on the assumption

of differentiability of ϕi with respect to ft up to the first order. The scaling term is based on

the Fisher information matrix and can also be expressed in additive form,

It =

m∑
i=1

Ii,t =

m∑
i=1

E[∇i,t∇′i,t|Ft−1]. (16)

The existence of It relies on the assumption of differentiability of ϕi with respect to ft up to

the second order. The innovation term is now defined as

st = I−1t ∇t, (17)
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where the invertibility of It is assumed but is often simply implied by the choices of distribution

ϕi, for i = 1, . . . ,m. Further, the martingale property of ∇t implies that E[st|Ft−1] = 0. In this

approach, the one-step ahead prediction of the time-varying parameter vector, ft+1, is primarily

based on the scaled score that exploits the full likelihood contribution at time t. The score-

driven time-varying parameter equations (14) and (17) are formulated as in Creal et al. (2013),

for the case of the measurement distributions in (12). The details for the Realized-Wishart-

GARCH model are given next. In the remainder of this treatment, we consider the updating

equation (14) with p = q = 1 to obtain

ft+1 = ω +Bft +Ast, (18)

with A = A1 and B = B1.

2.3 The details for the Realized-Wishart-GARCH model

We provide the details of the score-driven model as introduced above for the Realized-Wishart-

GARCH model with the time-varying covariance matrix Vt = Vt(ft) for the specification that ft

simply represents all elements of Vt. In particular, we require expressions for the score function

and the Fisher information matrix. Given the conditional independence assumption for the

variables in Zt, in our case Z1
t = rtr

′
t and Z2

t = Xt, we can decompose the contribution of the

log-likelihood function (22) at time t in two parts, that is

L(ψ) =

T∑
t=1

Lt(ψ), Lt(ψ) = Lr,t + LX,t,

with the log-likelihood parts given by

Lr,t =
1

2
dr(k)− 1

2
log |ΛVtΛ′| −

1

2
tr
(
(ΛVtΛ

′)−1rtr
′
t

)
, (19)

LX,t =
1

2
dX(k, ν) +

ν − k − 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr
(
V −1t Xt

)
, (20)

where dr(k) = −k log (2π), dX(k, ν) = νk log (ν/2)− 2 log Γk (ν/2) and Γk() is the multivariate

Gamma function for dimension k. In case of the Realized-Wishart-GARCH model, the two log-

likelihood expressions follow immediately since the distribution ϕ1 = W s
k (Ht, 1) is the singular

Wishart distribution and ϕ2 = Wk(Vt/ν, ν) is the k-th dimensional Wishart distribution.

Our aim is to specify a dynamic model for the matrix Vt and the time-varying parameter
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vector ft is therefore simply defined as

ft = vech(Vt), (21)

such that ft is a k∗× 1 vector with k∗ = k(k+ 1)/2. For the updating equation (14), we require

the score vector and Fisher information matrix that we obtain as described in Section 2.2.

Theorem 1. For the measurements densities (1) and (2), the score vector of dimension k∗× 1

is given by

∇t =
1

2
D′k
(
V −1t ⊗ V −1t

)(
ν ·
[
vec(Xt)− vec(Vt)

]
+
[
vec(Λ−1rtr

′
t(Λ
′)−1)− vec(Vt)

])
,

where Dk is the duplication matrix as discussed in detail by Magnus and Neudecker (1979). �

Given the statistical properties in (8), it follows that E[∇t|Ft−1] = 0 under correct model

specification; it implies that ∇t forms a martingale difference sequence. The expression for the

score shows that for the updating of ft, and hence Vt, information from the deviations of realized

covariance Xt from its mean Vt receives a weight ν, whereas information from deviations of rtr′t

from Vt receives a weight of one. This model feature is pertinent as the outer-product of daily

returns typically contains a weak signal about the current covariance of assets as it does not

exploit intra-day information.

Theorem 2. For the measurements densities (1) and (2), the conditional Fisher information

matrix of dimension k∗ × k∗ is given by

It = E[∇t∇′t|Ft−1] =
1 + ν

2
D′k
(
V −1t ⊗ V −1t

)
Dk. �

The inverse of the conditional information matrix exists since we have assumed that Vt is

nonsingular. This inverse matrix will be used to scale the score vector.

Theorem 3. For the measurements densities (1) and (2), the scaled score vector st = I−1t ∇t

is given by

st =
1

ν + 1

(
νvech(Xt) + vech(Λ−1rtr

′
t(Λ
′)−1)

)
− vech(Vt). �

The proofs of Theorems 1, 2 and 3 are given in Appendix A.
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For the updating of the time-varying parameter vector ft in (18), and to avoid the curse of

dimensionality, we can consider specifications with diagonal matrices for A = diag(α1, . . . , αk∗)

and B = diag(β1, . . . , βk∗), or with even more simpler scalar versions that have A = αIk∗ and

B = βIk∗ . We need to impose some constraints on the parameters to guarantee that the covari-

ance matrix Vt is positive definite with probability 1. For the scalar specification, the conditions

α ≥ 0 and β − α ≥ 0 are sufficient to ensure that Vt is positive definite. Other constraints are

needed for the diagonal specification which are discussed in more detail in Appendix C.

2.4 The Realized-Wishart-GARCH model with multiple measures

The results in Theorems 1-3 hold for our model with the two measurement equations (1) and (2).

However, it is straightforward to extend our Realized-Wishart-GARCH modeling framework to

incorporate several noisy measures of the daily equity covariance matrix Vt. For example, let

Xi
t = V

1/2
t ηitV

1/2
t , ηit ∼Wk(Ik, ν

i), i = 1, . . . , G,

where Xi
t is a noisy measure of the daily realized covariance matrix, for i = 1, . . . , G, with

G ∈ N. We define ν∗ =
∑G

i=1 ν
i and we have

∇t =
1

2
D′k
(
V −1t ⊗V

−1
t

) G∑
i=1

νi
[
vec(Xi

t)−vec(Vt)
]
, It = E[∇t∇′t|Ft−1] = D′k

(
V −1t ⊗V

−1
t

)
Dk

ν∗

2
,

and

st =

( G∑
i=1

νi

ν∗
vech(Xi

t)

)
− vech(Vt),

where the numbers of degrees of freedom ν1, ν2, . . . , νG are estimated along with other model

static parameters. We notice that νi ≡ 1 if Xi
t = rtr

′
t or for any matrix Xi

t that has rank one.

3 Estimation procedure and Monte Carlo study

We discuss the maximum likelihood estimation procedure and present simulation evidence for

the statistical small-sample properties of the maximum likelihood estimation method for our

model. We study estimation performance for varying sample size T and number of assets k.
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3.1 Estimation procedure

The log-likelihood function is given by

L(ψ) =

T∑
t=1

(
Lr,t + LX,t

)
, (22)

where Lr,t and LX,t are given in (19) and (20), respectively. The time-variation of Vt is deter-

mined by the score recursion (14) and parameterization (21). The static parameter vector is

given by

ψ =
(
vec(Λ)′, ω′, vec(A)′, vec(B)′

)′
,

and contains at least k2 + k(k + 1)/2 elements for ω and Λ and more elements depending

on the specification of A and B; the number of parameters is therefore of order O(k2). The

computation of the log-likelihood function (22) requires the updating equations (18) that needs

to be initialized. It is natural to set s0 = 0 and f0 either to the unconditional first moment

estimated from the data or it can be added to the vector of parameters ψ. In our empirical

analysis we set f0 to be (the vec of) the sample average of the realized covariance matrices

X1, . . . , XT . For a given parameter vector ψ, the log-likelihood function can be evaluated in a

straightforward manner. In practice, ψ is unknown and estimation of all parameters is carried

out via the numerical maximization of (22) with respect to ψ. The maximization relies typically

on a standard quasi-Newton numerical optimization procedure; the initial values for ψ can be

determined through a grid search method. For both the simulation study and the empirical

application, the model parameters are estimated using numerical derivatives.

As the dimension k increases, parameter estimation can become computationally demanding.

A possible approach to reduce the number of parameters can be based on covariance targeting

as proposed by Engle and Mezrich (1996) for GARCH models. Since the updating equation

(18) admits a vector autoregressive moving average (VARMA) representation, an analytical

expression for the intercept can be provided, if stationarity conditions are satisfied. When we

replace ω in (18) by its unconditional mean, we obtain

ft+1 = (Ik∗ −B)E[ft] +Bft +Ast,

where E[ft] is replaced by vech(T−1
∑T

t=1Xt). The introduction of targeting leads to a two-step

approach in estimation. We first remove the vector of constants by replacing it through some

13



consistent estimator of the unconditional mean. Then maximize the log-likelihood function with

respect to the remaining parameters. To avoid the curse of dimensionality further, parameter

reductions can be achieved by setting A and B as diagonal matrices or to scalars.

3.2 Monte Carlo study

We study properties of the likelihood-based estimation method by means of simulation exercises.

We consider a dimension of k ∈ {2, 5, 10} and we simulate a series of T ∈ {250, 500, 1000} daily

returns and daily covariance matrices. For simplicity, we study the scalar specification for the

time-varying parameter (18) with A = αIk∗ and B = βIk∗ . We further consider that all elements

of Λ are the same, that is λi,j = λ, for i, j = 1, . . . , k. The Monte Carlo data generation process

has adopted the following parameter values

ν = k + 10, ω = 0.10 vech(Ik), β = 0.97, α = 0.30, λ = 1, (23)

These parameter values are roughly in line with the empirical estimates that we present in

Section 4. A close-to-unity value for the autoregressive coefficient β = 0.97 is typically found

in many volatility studies. We simulate 5000 datasets in our Monte Carlo study. For each

generated dataset, we maximize the likelihood and we collect the estimates of parameters (23).

We estimate the parameters without constraints but with covariance targeting. We emphasize

that we do not simulate intra-day prices as we do not analyze the properties of high-frequency

realized measures but we only aim to validate the estimation procedures for our model.

In Figure 1 we present the density kernel estimates of the histograms of the 5000 estimates

for each parameter in ψ. Each graph contains three densities which are associated with the

three time series dimensions 250, 500 and 1000. For an increasing sample size T , the estimates

concentrate more at their true values while the densities become more symmetric. We find some

more skewness and heavy tails in the densities of the estimates obtained from the smaller sample

size T = 250. In particular, the density for the memory parameter β is skewed to the left and

the mode is shifted to the left near β = 0.97. This bias for β in small samples is somewhat

expected since autoregressive coefficients require generally a relatively long time series for its

estimation. Moreover, it is likely that the ad-hoc treatment of the initial value f0 will require

some strong adjustments for ft in the first part of the sample. This will cause a (negative) bias

in the estimation of β for relatively small samples. For an increasing sample size, this initial

estimation bias will vanish. The number of degrees of freedom of the Wishart distribution ν

14



Figure 1: Parameter estimate densities from the Monte Carlo study
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is estimated rather accurately, even for moderate sample sizes. This finding is promising but

somewhat surprising given that ν is a highly nonlinear parameter.

By increasing k, this is the number of assets in our simulation study, the shapes of the

densities become considerably more symmetric and more peaked around their true values; in

particular, compare the panels for k = 2 and k = 10. We notice that in the Monte Carlo study

our parameterization is parsimonious and therefore increasing k will lead to more pooling for

the estimation of the parameters. Also, the data size increases with k2 while the number of

parameters increases with k. The improvement is however remarkable for parameters α and

β. We may conclude overall that the maximum likelihood method is successful in the accurate

estimation of model parameters.

4 Empirical illustration

4.1 Dataset: open-to-close daily returns and realized covariance matrices

In our empirical study for a portfolio of equities, we aim to measure the variation across firms

and across market conditions. The equities consist of fifteen Dow Jones Industrial Average
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components with ticker symbols AA, AXP, BA, CAT, GE, HD, HON, IBM, JPM, KO, MCD,

PFE, PG, WMT and XOM. The empirical study is based on consolidated trades (transaction

prices) extracted from the Trade and Quote (TAQ) database through the Wharton Research

Data Services (WRDS) system. The time stamp precision is one second. The sample period

spans ten years, from January 2, 2001 to December 31, 2010, with a total of T = 2515 trading

days for all equities.

We analyze these 15 equities using the Realized-Wishart-GARCH model for different dimen-

sions of k ∈ {2, 5, 15}. To conserve space, we will present results for a randomly selected set of

ten bivariate models and ten 5-variate models amongst the 15 equities; the random selection is

justified as our primary aim is to verify estimation results, to understand their implications and

to detect similarities. We also present results for our model with all 15 equities included which

requires the modeling of a 15× 15 conditional covariance matrix. The sample period 2001-2010

represents two characteristic periods: first a period of low volatility and then a period of high

or even extreme volatility due to the “financial crises”. The length of a ten-year period is rather

standard in the GARCH literature.

In our study we have followed the standard practice of excluding the overnight return for the

computation of realized measures while daily asset returns can be based on both open-to-close

and close-to-close returns. The vector of daily asset returns rt is taken as open-to-close returns

in our study. The conditional covariance matrix Ht therefore measures the intra-day variations

and co-variations. Hence the covariance matrices Ht and Vt contain similar information. Given

the specification Ht = ΛVtΛ
′ in (7), we may expect matrix Λ to be close to an identity matrix.

However, the diagonal elements may be close to unity, the off-diagonal elements may reveal

some interesting information on cross-asset or spillover effects. When we would have considered

close-to-close returns, the overnight market risk, specific for each individual stock, would have

been accounted for by the parameter matrix Λ; this overnight effect is of key interest to many

market players such as liquidity providers or market makers who generally want to minimize

this risk and hedge it effectively.

Before we compute the realized measures, we carry out cleaning procedures to the raw

transaction data. The importance of tick-by-tick data cleaning is highlighted by Hansen and

Lunde (2006) and Barndorff-Nielsen et al. (2009) who provide a guideline on cleaning procedures

based on the TAQ qualifiers that are included in the files (see TAQ User’s Guide from WRDS).

In particular, we carry out the following steps: (i) we delete entries with a time stamp outside
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the 9:30am-4:00pm window; (ii) we delete entries with transaction price equal to zero; (iii)

we retain entries originating from a single exchange (NYSE in our application); (iv) we delete

entries with corrected trades (trades with a correction indicator, “CORR” 6= 0); (v) we delete

entries with abnormal sale condition (trades with “COND” has a letter code, except for “E" and

“F"); (vi) we use the median price for multiple transactions with the same time stamp; (vii) we

delete entries with prices that are above the ask plus the bid-ask spread.

For the computation of the realized covariance matrices, we adopt a kernel that is based on

a subsampling scheme. We use an overall sample frequency of 5 minutes and adopt the refresh

sampling scheme of Barndorff-Nielsen et al. (2011b). The refresh sampling scheme refers to the

irregular sampling over time: a time interval ends when at least one realization is recorded for

all considered k stocks. By shifting the starting time by 1-second increments, we obtain 300

different estimates in a 5 minutes interval; the average is our subsampled realized covariance

measure. Table 1 provides the number of observations and Table 2 provides the data fractions

that we have retained in constructing the refresh sampling scheme. Given the dimension k, we

record the resulting daily number of price observations. These statistics are averaged for each

year in our sample. We observe that for the 2 × 2 datasets we retain on average of around

60 − 65% observations; this fraction is somewhat robust over time and across equities. The

average number of refresh time observations is around 2800 and it moderately varies in time

with higher volatility during the financial crisis period of 2007-2009. For the 5×5 case the data

loss is more pronounced. We retain around 35 − 40% and we have 1800 refresh observations

on average. For the 15× 15 case, the overall average of fraction of retained observations equals

around 22% while the average number of observations is around 950.

4.2 Estimation results

We present the parameter estimation results from the Realized-Wishart-GARCH model when

applied to the datasets as described. The dynamic specification for the covariance matrix Vt

is based on the updating equation (18) for ft = vech(Vt) with A = αIk∗ and B = βIk∗ . In

Appendix C, we consider the estimation results for a less parsimonious specification that allows

for different dynamics for the variances (αv and βv) and covariances (αc and βc). The additional

results do not suggest that a more flexible specification provides better results compared to those

for the basic specification. We also investigate the presence of cross-effects by having Λ as a

diagonal matrix and as a full matrix. When off-diagonal elements of Λ are estimated to be
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significantly different from zero, it implies that cross-effects are present. Table 3 presents the

maximum likelihood estimation results for the parameters in the Realized-Wishart-GARCH

model for k = 2. We report the estimates of the models for a full matrix Λ (first panel) and

for a diagonal matrix Λ (second panel). The estimates of the diagonal elements of Λ tend to be

close-to-unity but most have estimated values just below unity, the smallest estimate is 0.88 and

the largest is 1.03. Many off-diagonal elements are estimated as not being significantly different

from zero, only five out of twenty appear to have some statistical impact. The significantly

estimated off-diagonal elements of Λ are all positive and range from 0.03 to 0.23. Although in

most cases, the Akaike information criterion (AIC) points weakly towards a model specification

with a full Λ matrix, other aspects of our analyses, including the estimates of ν, β and α, are

not affected when we restrict Λ to be diagonal. Table 4 presents the results for the model with

k = 5 and Table 5 presents those for the model with k = 15, both with a diagonal matrix Λ.

Taking all results together, the estimates of the parameters amongst the different stock

combinations are very similar. In general, we find that the estimates of β are close-to-unity from

which we can infer that the time-varying process of the covariance matrix is highly persistent.

We also observe that the dynamics of Vt rely more on the realized kernel measures given the

highly significant estimates of ν. Furthermore, we find that for a higher dimension k, the

estimates of ν become higher and more significant. It implies that for models with more stocks,

more reliance is given to the realized measures. We emphasize that the degrees of freedom ν

needs to grow with the dimension k in order to ensure that the Wishart covariance matrix does

not become non-singular; see Seber (1998, Section 2.3). However, when the dimension of k is

fixed, a larger value for ν implies that the information coming from the realized measure is

given more prominence in our Realized-Wishart-GARCH model. The estimates of ν appear to

be higher in relation to the dimension k and we therefore conclude that the realized measures

play a considerable role in our analysis.

4.3 Forecasting study: other forecasting models and methods

In our forecasting study, we compare the out-of-sample performance of the Realized-Wishart-

GARCH (RWG) model against four alternative forecasting models and methods. Our model

allows for a joint analysis of daily returns and realized variance variables. In our comparisons,

we consider two forecasting approaches for daily returns and two for realized measures. The

two models for the vector of daily returns are the dynamic conditional correlation (DCC) model
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15× 15 AA/.../XOM
ν 29.260

(0.060)

β 0.990
(0.000)

α 0.187
(0.001)

λ11 0.966
(0.012)

λ22 0.978
(0.012)

λ33 0.992
(0.013)

λ44 0.990
(0.012)

λ55 0.908
(0.010)

λ66 0.943
(0.012)

λ77 0.922
(0.011)

λ88 0.985
(0.012)

λ99 0.951
(0.012)

λ1010 0.928
(0.012)

λ1111 0.954
(0.013)

λ1212 0.954
(0.013)

λ1313 0.900
(0.012)

λ1414 0.903
(0.011)

λ1515 0.952
(0.012)

logL -61418.1

Table 5: Maximum likelihood estimates for the 15 × 15 model. Standard errors are shown in
parentheses.
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of Engle (2002a) and the so-called BEKK model of Engle and Kroner (1995). The model-

based forecasting framework for the realized covariance matrix is the conditional autoregressive

Wishart (CAW) model of Golosnoy et al. (2012) while the non-parametric forecasting method

is based on the exponentially weighted moving average (EWMA) scheme. In the forecasting

study, we consider the scalar specifications for the updating of the conditional covariance matrix

in the RWG model but also, where applicable, for the DCC, BEKK and CAW models. Finally,

we assume matrix Λ to be diagonal in the RWG model. A short practical introduction to each

model is provided next.

The CAW model assumes that the conditional distribution of the realized variance is Wishart

with scale matrix V c
t and degrees of freedom νc, we simply have Xt|Ft−1 ∼Wk(V

c
t /ν

c, νc). The

updating of the conditional covariance matrix is also subject to covariance targeting and to the

scalar specification, that is

V c
t+1 = (1− βc − αc)X̄ + βc V c

t + αcXt, βc ≥ 0, αc > 0, αc + βc < 1,

for t = 1, . . . , T and with X̄ = (1/T )
∑T

t=1Xt. The EWMA method is the one-step ahead

forecasting scheme applied to the realized variance series; it is the default method used by

practitioners and regulators; see, for example, RiskMetrics as described by J.P.Morgan (1996).

The updating equation also has a scalar specification and is given by

V e
t+1 = βe · V e

t + (1− βe) ·Xt, 0 < βe < 1,

where we treat βe as a fixed smoothing constant that we set equal to βe = 0.96. In our

implementation, we can regard EWMA as a special or limiting case of CAW with αc = 0.04

and βc = βe = 0.96. The DCC model assumes that the daily returns vector is conditionally

normally distributed as rt|Ft−1 ∼ N(0, V d
t ) with its covariance matrix given by V d

t+1 = DtRtDt

where Dt is a diagonal matrix with its i-th diagonal element given by
√
hi,t and where Rt is

the conditional correlation matrix with Rt = diag[Qt]
−1/2Qtdiag[Qt]

−1/2, for t = 1, . . . , T . The

updating of hi,t and Qt takes place in two different steps. It is assumed that hi,t follows the

GARCH(1,1) process as given by

hi,t+1 = ωdi + βdi hi,t + αdi r
2
i,t, ωdi > 0, βdi ≥ 0, αdi > 0, αdi + βdi < 1,
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for i = 1, . . . , k and where ri,t is the ith element of daily return vector rt. The scalar updating

equation with covariance targeting for Qt is given by

Qt = (1− β+ − α+)Q̄+ β+Qt + α+εtε
′
t, β+ ≥ 0, α+ > 0, α+ + β+ < 1,

where εt is the GARCH residual vector with its ith element given by εi,t = ri,t /
√
hi,t, for

i = 1, . . . , k, and Q̄ = T−1
∑T

t=1 εtε
′
t. The BEKK model assumes that rt|Ft−1 ∼ N(0, V b

t ) and

the covariance matrix of the vector of asset returns is driven by the outer-products of daily

returns. The scalar updating equation with covariance targeting is given by

V b
t+1 = (1− βb − αb)V̄ + βbV b

t + αbrtr
′
t, βb ≥ 0, αb > 0, αb + βb < 1,

where V̄ = T−1
∑T

t=1 rtr
′
t is the sample covariance matrix of daily returns, and ab and bb are

unknown coefficients.

4.4 Forecasting study: design and forecast loss functions

We split our original dataset in two subsamples: the in-sample data consists of the years 2001-

2008 and the out-of-sample consists of the years 2009-2010. We consider these last two years as

our forecasting evaluation period. The years 2009-2010 are somewhat representative of financial

markets. In 2009 many large equity recovery operations have taken place in the U.S. while 2010

has shown a return to a modest market risk.

The estimation of the static parameter vector, for all model specifications, is done only once

for the in-sample data. The one-step ahead forecasts are generated for the out-of-sample data

(without the re-estimation of static parameters), for all model specifications. The evaluation of

the out-of-sample forecasts is based on the Diebold-Mariano (DM) test to assess the statistical

significance of the superiority of the forecasting performance of a specific model; see Diebold and

Mariano (1995). In our study, we test whether our Realized-Wishart-GARCH (RWG) model has

a significantly smaller out-of-sample loss compared to the loss of the other considered models in

our forecasting study. For this purpose, we measure the performance of the models by means

of two loss functions: the root mean squared error (RMSE) based on the matrix norm given by

RMSE(Vt, St) = ||St − Vt||1/2 =

[∑
i,j

(Sij,t − Vij,t)2
]1/2

,
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and the quasi-likelihood (QL) loss function as given by

QL(Vt, St) = log |Vt|+ tr
(
V −1t St

)
,

where St is an observed measure of the covariance matrix and Vt is the covariance matrix as

predicted by the model or method. Given that we jointly analyze rt and Xt with our RWG

model, we evaluate the performances of all models in forecasting the daily returns density and

the realized variances and covariances. Therefore St = Xt for the forecasting of the realized

covariance matrix and St = rtr
′
t for the forecasting of the density in daily returns. We notice

that in case of daily returns with St = rtr
′
t, the quasi-likelihood loss is equivalent to the log-score

criterion for a Gaussian distribution. The log-score criterion is widely used in density forecast

comparisons between different models; see Geweke and Amisano (2011).

4.5 Forecasting study: empirical results

The results of our forecasting study are summarized in Tables 6 and 7: in Table 6 we report

the forecasting results for the realized covariance matrix and in Table 7 for the density in daily

returns. Both tables display the relative value of the loss function for our RWG model against

the other models. We measure the relative performance by the ratio between the loss for a

given model and the loss for the RWG model. When a model has a relative performance larger

than unity, the implication is that it underperforms the RWG model. The opposite is also true.

When the relative performance is smaller than unity, the model outperforms the RWG model.

We learn from Table 6 that the RWG and CAW models are the best performing models in

forecasting the realized measures. Their performances are very similar in relative terms and,

except for a few cases, there is not a statistically significant difference. This finding is to be

expected given that the daily returns are not very informative to forecast the realized measures.

Therefore the RWG model is not expected to outperform the CAW model by a large amount.

However, from Table 7 we can conclude that the RWG model is by far the best performing model

in forecasting the density in daily returns. The outperformance is in relative terms as well as in

statistical terms because the reported DM tests are clearly significant in most cases. Here the

RWG is able to outperform the DCC and BEKK convincingly. The reason is obvious since it

exploits additional information as provided by the realized measures. In a similar fashion, the

RWG model outperforms the CAW model and the EWMA method since our preferred model

analyzes the daily returns jointly with the realized measures. On the other hand, the CAW
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model and the EWMA method only consider the realized measures. We can therefore conclude

that the factor structure of the RWG model is particularly useful in exploiting the realized

measures for the forecasting of the density in daily returns.

5 Conclusions

We have proposed a new model for the joint modeling and forecasting of daily time series

of returns and realized covariance matrices of financial assets: the Realized-Wishart-GARCH

model. There are many distinguishing features of our model when compared to alternative

frameworks. First, the model relies both on low- (daily) and on high-frequency (intra-day)

information. It turns out that the high-frequency measures are given most weight since they

exploit intra-day data of financial assets to infer about the underlying covariance structures.

Several noisy measures that are based on different sampling frequencies can be considered in

the analysis. Second, the time-varying features of the Realized-Wishart-GARCH model are

driven by updates of the covariance matrix that exploit full-likelihood information. The model

relies on standard parsimonious formulations which is a convenient property for multivariate

conditional volatility models. In particular, the model is closely connected with the multivariate

GARCH literature and the dynamics are related with vector autoregressive moving average

models. Third, the model parameters can be interpreted straightforwardly. An example is that

overnight market risk can be measured directly via the parameter matrix Λ when daily close-

to-close returns are considered in the analysis. Fourth, the modeling framework is flexible: it

can be extended easily when more realized measures are considered. The multivariate model

can also be used to simulate realistic dynamic paths for portfolios in order to facilitate the

validation of investment strategies. Fifth, the likelihood function is available analytically and

hence estimation is easy; nonetheless computer code is made available for its use. Finally,

in an empirical study for a portfolio of fifteen NYSE equities, we have studied the Realized-

Wishart-GARCH model and its different specifications. We have provided in-sample evidence

that our basic specification can be effective in extracting the salient features in the data. In an

out-of-sample forecasting study we compare our model performance against four competitive

models and methods. The ability of our model to jointly capture the daily returns vector and

the realized covariance matrix appears in particular to benefit the accuracy in forecasting the

density of daily returns.
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APPENDICES

A Matrix Notation and Preliminary Results

The results in this paper make use of the following matrix notation and definitions. Let A and

B be k×k matrices, then A⊗B denotes the Kronecker product, which is a k2×k2 block matrix

{aijB} where aij is the (i, j) element of matrix A. The vec(A) operator stacks the columns of

matrix A consecutively into the k2×1 column vector, while vech(A) stacks the lower triangular

part including diagonal into k∗ × 1 column vector, with k∗ = k(k + 1)/2. The k × k identity

matrix is denoted by Ik. We define the k2×k2 commutation matrix Kk, the k2×k∗ duplication

matrix Dk, and the k∗ × k2 elimination matrix Lk, by the identities

Kkvec(B) = vec(B′), Dkvech(A) = vec(A), and Lkvec(A) = vech(A),

where B is an arbitrary k × k matrix and A is an arbitrary symmetric k × k matrix. Here

Lk = (D′kDk)
−1D′k is the Moore-Penrose inverse of the duplication matrix Dk. Additional

properties and results related to these matrices can be found in Magnus and Neudecker (2007)

and Seber (2007).

The proofs in the next appendix make use of the following results in matrix calculus. For a

k × k symmetric matrix X, the derivative of vec(X) with respect to vech(X) is given by

∂vec(X)

∂vech(X)′
= Dk,

where the duplication matrix Dk is defined above. For all k× k nonsingular matrices A, X and

B, we have

∂ log |AXB|
∂vec(X)′

= vec[(X−1)′]′,

∂vec(X−1)

∂vec(X)
= −(X−1)′ ⊗X−1,

∂tr(AXB)

∂vec(X)
= vec(A′B′)′. (24)

Finally, for all k × k matrices A, B and C, we have

vec(ABC) = (C ′ ⊗A)vec(B). (25)
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B Proofs

Proof of Theorem 1. We derive the score vector of which the general form is given by (15).

From the equations (19) and (20), the relevant parts of log-likelihoods for the score vector

derivation can be explicitly given as in

Lr,t = cr −
1

2

(
log |ΛVtΛ′|+ tr

(
(ΛVtΛ

′)−1rtr
′
t

))
, (26)

LX,t = cX −
ν

2

(
log |Vt|+ tr

(
V −1t Xt

))
, (27)

where cr and cX are non-relevant constants. We consider the covariance matrix Vt and parameter

vector ft, given by (21), as two unknown, non-random variables. Using the chain rule for vector

differentiation, the score functions for the individual measurements associated with (1) and (2)

can be expressed by

∂ log ϕi(Z
i
t |ft,Ft−1;ψ)

∂f ′t
=
∂ log ϕi(Z

i
t |ft,Ft−1;ψ)

∂vec(Vt)′
∂vec(Vt)

∂f ′t
.

We first differentiate the measurement density for returns (26). Using (24) and (25), together

with noting that Vt is symmetric and V −1t = V −1t VtV
−1
t , we obtain

∂Lr,t
∂vec(Vt)′

= −1

2

[
vec(V −1t )′ − vec(Λ−1rtr

′
t(Λ
′)−1)′(V −1t ⊗ V −1t )

]
= −1

2

[
vec(Vt)

′(V −1t ⊗ V −1t )− vec
(
Λ−1rtr

′
t(Λ
′)−1

)′
(V −1t ⊗ V −1t )

]
=

1

2

[
vec(Λ−1rtr

′
t(Λ
′)−1)′ − vec(Vt)

′] (V −1t ⊗ V −1t ), (28)

and similarly we differentiate the measurement density for the realized covariance (27), we have

∂LX,t
∂vec(Vt)′

= −ν
2

[vec(V −1t )′ − vec(Xt)
′(V −1t ⊗ V −1t )]

= −ν
2

[
vec(Vt)

′(V −1t ⊗ V −1t )− vec(Xt)
′(V −1t ⊗ V −1t )

]
=

ν

2
[vec(Xt)− vec(Vt)]

′(V −1t ⊗ V −1t ). (29)

Therefore, given the results (28) and (29), combined with the fact that ∂vec(Vt)/∂f
′
t = Dk and

with the score defined in (15), we conclude that the proof of Theorem 1 is completed. �

Proof of Theorem 2: We derive the Fisher information matrix whose general form is given

by (16). Using the results from the proof of Theorem 1, the individual score functions are given
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by

∇r,t =
1

2
D′k
(
V −1t ⊗ V −1t

)[
vec(Λ−1rtr

′
t(Λ
′)−1)− vec(Vt)

]
,

∇X,t =
ν

2
D′k
(
V −1t ⊗ V −1t

)[
vec(Xt)− vec(Vt)

]
,

for the measurement densities of the vector of returns and of the covariance matrix, respectively.

By taking E[∇i,t∇′i,t|Ft−1], we obtain

Ir,t =
1

4
D′k
(
V −1t ⊗ V −1t

)
var
[
vec(Λ−1rtr

′
t(Λ
′)−1)− vec(Vt)|Ft−1

](
V −1t ⊗ V −1t

)
Dk,

IX,t =
ν2

4
D′k
(
V −1t ⊗ V −1t

)
var
[
vec(Xt)− vec(Vt)|Ft−1

](
V −1t ⊗ V −1t

)
Dk.

Using the results (10) and (11), and given that (V −1t ⊗ V −1t )(Vt ⊗ Vt) = Ik2 , we have

Ir,t =
1

4
D′k
(
V −1t ⊗ V −1t

)
(Ik2 +Kk)Dk,

IX,t =
ν

4
D′k
(
V −1t ⊗ V −1t

)
(Ik2 +Kk)Dk.

Finally, considering that Ik2 + Kk = 2DkLk (see Theorem 12 in Chapter 3 of Magnus and

Neudecker (2007)) and that LkDk = Ik∗ , we obtain

Ir,t =
1

2
D′k
(
V −1t ⊗ V −1t

)
Dk,

IX,t =
ν

2
D′k
(
V −1t ⊗ V −1t

)
Dk,

which combined with (16) completes the proof. �

Proof of Theorem 3: The score ∇t can be written as

∇t =
1

2
D′k
(
V −1t ⊗ V −1t

)
DkLk

(
ν
[
vec(Xt)− vec(Vt)

]
+
[
vec(Λ−1rtr

′
t(Λ
′)−1)− vec(Vt)

])
,

since D′k
(
V −1t ⊗ V −1t

)
DkLk = D′k

(
V −1t ⊗ V −1t

)
; see Theorem 13 in Chapter 3 of Magnus and

Neudecker (2007). Together with the expression of the conditional Fisher information It =

ν+1
2 D′k

(
V −1t ⊗ V −1t

)
Dk and the equality

(
D′k
(
V −1t ⊗ V −1t

)
Dk

)−1
D′k
(
V −1t ⊗ V −1t

)
Dk = Ik∗ , we

have completed the proof for Theorem 3. �
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C Additional estimation results

In this Appendix we consider a less parsimonious dynamic specification for the covariance matrix

Vt: we allow variances and covariances to have different persistency levels. The empirical results

do not suggest that the more general specification leads to improvements in terms of in-sample

goodness-of-fit.

We consider matrices A and B in (18) to be diagonal matrices where the coefficients αi and βi

corresponding to a conditional variance are set equal to αv and βv, respectively. The coefficients

αi and βi corresponding to a conditional covariance are set equal to αc and βc, respectively.

The matrices A and B can also be defined as A = diag(vech(Ã)) and B = diag(vech(B̃)). The

matrix Ã is a k×k matrix with diagonal elements equal to αv and outer diagonal elements equal

to αc. Similarly, the matrix B̃ is a k × k matrix with diagonal elements equal to βv and outer

diagonal elements equal to βc. This specification allows us to explore whether the variances and

covariances have different dynamic properties.

We impose the additional parameter constraints αv ≥ αc ≥ 0 and βv − αv ≥ βc − αc ≥ 0 to

ensure that Vt is positive definite with probability 1. These constraints can be easily obtained

when we notice that the covariance matrix Vt can be expressed as

Vt+1 = E[Vt](Ik − B̃) + (B̃ − Ã)� Vt + Ã�
(

1

v + 1

(
vXt + Λ−1rtr

′
t(Λ
′)−1

))
,

where � denotes the Hadamard product. Therefore we impose that B̃ − Ã and Ã are positive

definite, which leads to the parameter constraints as stated above. Imposing B̃ − Ã and Ã to

be positive definite also guarantees that Vt is positive definite by an application of the Schur

product theorem.

We estimate the parameters for the 2 × 2 models of Table 3 and consider both the case

where Λ is a full matrix and the case where Λ is a diagonal matrix. The results are reported in

Table 8. The results suggest that the variances and covariances have the same dynamics, that

is, αv = αc and βv = βc. This can be concluded since the estimates of αv and αc, as well as βv

and βc, are not significantly different from each other. Finally we notice that imposing αv = αc

and βv = βc leads to the scalar models that are estimated in Table 3.
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