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1 Introduction

Modeling conditional dependency structure of financial assets through time-varying covariance
matrices is typically based on multivariate extensions of generalized autoregressive conditional
heteroskedasticity (GARCH) models and stochastic volatility (SV) models for daily returns.
These classes of models aim to extract time-varying covariance matrices from vector time series
of financial returns. The dynamic process for multivariate volatility (variances, covariances and
correlations) is typically specified as a vector autoregressive moving average process. Various
multivariate GARCH and SV models have been developed and applied in recent years. For
a comprehensive overview of multivariate GARCH models, we refer to Bauwens et al. (2006),
Silvennoinen and Terésvirta (2009) and Anudrino and Trojani (2011). Reviews of multivariate
SV models are provided by Asai et al. (2006) and Jungbacker and Koopman (2006). These
developments in financial econometrics are also related with the theoretical developments in
finance and in particular with the literature on option pricing, optimal portfolio modeling, and
term structure modeling. For example, Driessen et al. (2009) investigate individual volatility
risk premia differences (typically in relation to a portfolio or index) and they explain them by
a high correlation risk premium. More recently, the study of Buraschi et al. (2017) focuses on
a priced disagreement risk that explains returns of option volatility and correlation in trading
strategies. In all such studies, the multivariate GARCH and SV models for volatilities and
correlations in multiple asset returns (possibly within a portfolio) are of key importance.

The main shortcoming of traditional multivariate GARCH and SV models is that they solely
rely on daily returns to infer the current level of multivariate volatility. Given the increasing
availability of high-frequency intra-day data for a vast range of financial assets, the use of only
low-frequency daily data appears inefficient for making statistical inference on time-varying
multivariate volatility. One important consequence is that models based on daily data do not
adapt quickly enough to changes in volatilities which is key to track the financial risk in a
timely manner; see Andersen et al. (2003) for a more detailed discussion. The relevance of
these issues in the context of discrete volatility models, possibly with leverage effects, and their
relations to option pricing models have been discussed and reviewed recently in Khrapov and
Renault (2016). Various attempts have been made to use high-frequency intra-day data into the
modeling and analysis of volatility. For instance, information from high-frequency data can be
incorporated by adding it in the form of an explanatory variable to the GARCH or SV volatility
dynamics; see Engle (2002b) and Koopman et al. (2005).



With the advent of high-frequency data, one can estimate ex-post daily return variation with
so-called realized variance (or realized volatility) measures; see Andersen and Bollerslev (1998),
Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002). Inherent to high-frequency
data is the microstructure noise (bid-ask bounce, decimal misplacement etc.) which leads to bias
and inconsistency of standard measures. A number of related measures have been developed
to restore the consistency; see Ait-Sahalia et al. (2005), Barndorfl-Nielsen et al. (2008), Jacod
et al. (2009), Hansen and Horel (2009), and references therein. In the case of multiple assets,
realized measures of asset covariance have also been proposed and considered; see Christensen
et al. (2010), Barndorff-Nielsen et al. (2011a), Griffin and Oomen (2011), and references therein.
Andersen et al. (2001) have explored the use of autoregressive models to analyze time series
of realized volatilities. They have found considerable improvements in volatility forecasts over
standard GARCH models. More recently, some new promising models have been proposed that
rely on time series of realized measures. Gourieroux et al. (2009) have proposed (non-central)
Wishart autoregressive model for realized covariance matrix. Asai and So (2013) and Golosnoy
et al. (2012) have proposed alternative dynamic formulation for covariance parameters with
the underlying Wishart distribution. Chiriac and Voev (2011) and Bauer and Vorkink (2011)
have proposed models for realized covariances using appropriate transformations to ensure the
positive definiteness of the covariance matrix. In our study we also rely on the Wishart distri-
bution but we propose a novel conditional model formulation for the covariance matrix. For
the updating of the conditional covariance matrix, we use daily as well as intra-daily financial
returns.

An approach that combines possibly several measures of volatility based on low- and high-
frequency data is recently proposed by Engle and Gallo (2006). They model jointly close-to-
close returns, range and realized variance with the multiplicative error model (MEM) where
each measure has its own dynamics for the update of latent volatility augmented with lagged
values of other two measures. Engle and Gallo (2006) find that combination of these three noisy
measures of volatility brings gains when making medium-run volatility forecasts. Shephard and
Sheppard (2010) explore a similar model structure and refer to it as the HEAVY model, which
was extended to the multivariate setting in Noureldin et al. (2012). Then a further extension
based on the use of more heavy-tailed distributions is proposed by Opschoor et al. (2017). In
the aforementioned models, a time-varying parameter is introduced for every realized measure

that is included in the model. An alternative approach is the Realized GARCH framework by



Hansen et al. (2012) where daily returns and realized measures of volatility are both associated
with the same latent volatility which circumvents the need for additional latent variables. The
Realized GARCH framework has been developed further in Hansen et al. (2014). A Realized SV
model is proposed by Koopman and Scharth (2013). Our present work introduces an extension
of the Realized GARCH model to the multivariate case and the use of a score-driven framework
for the time-varying conditional covariance matrix.

Our primary aim is to specify a model for the daily time-varying covariance matrix and
to extract it by using both low- and high-frequency data. For this purpose we propose a
specification for the unobserved daily covariance matrix as a function of realized measures of
daily covariance matrices and past outer-products of daily return vectors. The challenge is
to suitably weight these different variance and covariance signals. For this purpose, we adopt
the score-driven framework of Creal et al. (2013). Our joint modeling framework relies on a
Wishart distribution for realized covariance matrices and on a Gaussian distribution for vectors
of daily returns. The updating of the time-varying covariance matrix is driven by the scaled
score of the predictive joint likelihood function; Blasques et al. (2015) have argued that such
updating is locally optimal in a Kullback-Leibler sense. The score function turns out to be a
weighted combination of the outer-product of daily returns and the actual realized measures;
the weighting relies on the number of degrees of freedom in the Wishart distribution. We refer
to our resulting model as the Realized-Wishart-GARCH model.

In our empirical illustration for a portfolio of 15 U.S. financial assets, the parameter estimates
imply that the realized measures receive more weight than the outer-product of the vector of
daily returns. We confirm that the realized measure is a more accurate measure of the covariance
matrix as it exploits intra-day high-frequency data. In an out-of-sample study we show that
our modeling framework can lead to accuracy improvements in forecasting, especially those for
the density in daily returns.

The remainder of the paper is organized as follows. In Section 2, we introduce the Realized-
Wishart-GARCH model for multivariate conditional volatility. In Section 3, we conduct a
Monte Carlo study to verify the performance of likelihood-based estimation. Section 4 presents
the results of our in-sample and out-of-sample empirical study for a portfolio of fifteen NYSE
equities. It includes a thorough forecasting comparison of our model against several other
competitive models and methods. Section 5 concludes. The Appendices provide some matrix

algebra results, proofs of the main results and additional estimation results.



2 The Realized-Wishart-GARCH Model

The development of our model for the time-varying conditional covariance matrix starts with
the assumption that for each trading day and for a selection of assets, we have a data vector
of daily returns and a measure (or possibly several measures) of the daily realized covariance
matrix. We build a model for these data sources and implicitly use both low- and high-frequency
data. The proposed structure of the model permits the use of several realized measures that are
based on different sampling frequencies. In this section we discuss our modeling assumptions.
We then describe the modeling strategy and we provide technical details of our new model for
multivariate conditional volatility. Some matrix notation and preliminary results are presented

in Appendix A and proofs are collected in Appendix B.

2.1 Modeling assumptions

Let r; € R* denote a k x 1 vector of daily (demeaned) log returns for k assets and let the
X, € RF*F denote a k x k realized covariance matrix of k assets on day ¢, with ¢t = 1,...,7. Let

Fi—1 be the sigma field generated by the past values of r; and Xy, that is Fy_1 = o(rs, Xs; 8 =

1,...,t —1). We assume the following conditional densities
re|Fe-1 ~ Ni(0, Hy), (1)
Xt|ft—1 ~ Wk(‘/t/l/, V)’ (2)

with non-singular k£ x k covariance matrix Hy of the zero-mean multivariate normal distribution
Nk (0, H;) and non-singular k x k covariance matrix V; as the mean of the k-th dimensional
Wishart distribution Wy (V;/v,v) with degrees of freedom v > k. The covariance matrices Hy
and V; are both measurable with respect to F;_;. The variables r, and X; in (1) and (2) are
conditionally independent of each other. The (unconditional) dependence between r, and X; is
assumed to rely only on the dependence between H; and V;. The coefficient v encapsulates the
precision by which X; measures V;. A larger value of v implies a more accurate measurement
X; for V4.

The normal density function for r¢|F;—; is given by

exp{ - %tr(Ht—lrtrg) } (3)

(27)2 | Hy|2



and the density function of the k-variate standard Wishart distribution for X;|F;_; is given by

’Xt’(ufkfl)/Z v .
20k) /2, ~(Wh)[2 [V |v/2T, (%)exp —§tr(v; Xi) ps (4)

with multivariate Gamma function I'y, (a) = e Hle I'(a+ (1 —1)/2) for any a > 0. The

measurement equations can be formally given by
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| Fio1 = Htl/ Et, Xi|Fio1 = ‘/}1/2

1/2
v, ", (5)
where AY/2 denotes the square root matrix of A and where the measurement innovations are
assumed to be, mutually and serially, identically and independently distributed (iid) random

variables, that is

Et ~ Nk(ov-[k)7 e ~ Wk(Ik/VJ V)a

with & x 1 random vector ¢; and k x k random matrix 7, with property E(e;7n,) = 0, for
t,s=1,...,T.

We assume that realized covariance X; is available on each day t as it can be measured
consistently by the multivariate realized kernel of Barndorff-Nielsen et al. (2011a) or related
measures described by Griffin and Oomen (2011). The distributional assumption (1) implies

that the outer product of the daily returns vector is distributed as
TtT£|Ft—1 ~ le(Hta ]-)7 (6)

where W} (Hy, 1) is the Singular Wishart distribution with mean H; and one degree of freedom,
see Uhlig (1994) and Srivastava (2003). We notice that the covariance matrix Hy is non-singular;
the distinctive feature of the Singular Wishart is that v < k and in (6) we have v = 1 while for
the Wishart we have v > k. Given the specification in (6), we can formulate the measurement

equations alternatively as
1/2 - 771/2 /2 1,1/2
vl Fea = HPGH, Xl R = VP2

with ¢ ~ W7 (I, 1), and where ¢; and 7; are, serially and mutually, iid processes of k x k
stochastic matrices. In this representation, the measurement equations are expressed in terms

of variances and covariances.



The developments in our study are based on the assumption that the conditional covariance
matrix of (daily) returns and the conditional mean of the realized covariance matrix share the
same dynamic processes. Specifically, we let the covariance matrix H; to be fully dependent on
V4, and vice-versa, that is

H, = AVA, (7)

where A = ();;) is a k£ x k non-singular matrix. Due to the quadratic form in (7), a sign
restriction on A needs to be imposed to ensure identifiability. For this purpose, we impose the
sign restriction A1; > 0. The specific role and economic interpretation of A depends on whether
daily returns are computed as close-to-close or open-to-close; we refer to the empirical study for
a discussion. Our model specification implies that the conditional statistical properties of the

measurements can be expressed in terms of V; and A, that is

Elrel|Fio] = AVA,  E[X|F_] = V, (8)
Var[vec(riry)|Fio1] = (I + Kp)(A®@A) (Vi @ V) (A @A), (9)
Var[vec(A b (A) "D Fica] = (Le + Ki) (Vi @ V7)), (10)
Var[vec(Xy)|Fi—1] = v ' (L + Ki) (Vi ® Vi), (11)

where K}, is the k? x k? commutation matrix as discussed in detail in Magnus and Neudecker
(1979) from which also the results of (9) and (11) follow directly. The result in (8) corresponds
to the conditional second moment, while the results in (9) and (10) correspond to the conditional
fourth moment (kurtosis) of returns. It is a convenient feature of our modeling framework that
conditional second moments of realized covariance (11) provides model-implied volatilities-of-
volatilities and volatility cross-asset effects (also known as spill-over effects).

We introduce the time-varying vector process f; for which the details of its dynamic model
specification are given below. We assume that V; is a function of f;, that is V; = Vi(f) for
t =1,...,T. This flexible specification can accommodate a covariance matrix V; that is only
partly time-varying. But it can also allow for specifications that lead to a fully time-varying
matrix V;. In our study we consider the specification f; = vech(V};) where the operator vech(V})

stacks the diagonal and lower-triangular elements of the covariance matrix V; into a vector.



2.2 Score-driven dynamics

In this section we discuss how the dynamic properties of the time-varying parameter f; can be
specified. We provide details of how the model formulation is derived taking into account the
measurement densities that are introduced in the previous section. We adopt the score-driven
approach to time-varying parameters as developed by Creal et al. (2013). They construct
a general dynamic modeling framework in which the local score function (at time t) of the
conditional or predictive likelihood function is used for updating time-varying parameters. Given
that the conditional score function is a function of past observations, the model belongs to the
class of observation-driven models; see Cox (1981).

Consider the set Z; consisting of m vector or matrix variables, we have Z; = {Ztl, R ZZ"},
for which observations or measurements are available for ¢t = 1,...,T. For our Realized-Wishart-
GARCH model, we have m = 2, Z} = ry7, and Z? = X;. It is a straightforward extension to
include more variables into Z;, such as other realized measures that can possibly provide more

information on V; = Vi(f;). The measurement distribution for the ith variable in Z; is given by
Zi ~ 0i(ZE fr, Fro1;1), i=1,...,m, t=1,...,T, (12)

where f; is the d x 1 vector of time-varying parameters, F;_1 = o(Zs;s = 1,...,t — 1) is the
sigma field generated by all observations up to time ¢ — 1, and v is a vector of (unknown) static
model parameters. In this framework, the individual distribution ; may correspond to different
families of distributions. All distributions however depend partially on the same time-varying
parameter vector f;. For our Realized-Wishart-GARCH model with conditional distributions
(1) and (2), and with specification (7), return vector r; and realized covariance matrix X
have different distributions but are assumed to be propelled by the common covariance matrix
Vi = Vi(ft). Finally, the distribution ¢; in (12) may depend on exogenous variables; we omit
this extension for simplicity in notation.

We assume that the m variables in Z; are conditionally independent, conditional on both
f+ and the information set F;_1. We further assume that the distributional functions ¢; are at
least differentiable up to the first order with respect to f;. The log-likelihood function is then

given by
T m
L) =D log @i(Z{|fr, Fi-1;1). (13)

t=1 i=1



The time-varying parameter f; is updated via the recursive equation

p q
fir1 =w+ Z B; fi—iy1 + Z Ajst_ji1, (14)
i=1 j=1

where w is an d x 1 vector of constants, s; is a mean-zero and finite variance martingale difference
sequence, B; and A; are d x d matrices of coeflicients. The unknown parameters in w, By, ..., By,
Ay, ..., Ay and those associated with the measurement equations, such as the number of degrees
of freedom in the Wishart distribution, are collected in the static parameter vector . The
vector autoregressive moving average representation (14) proves convenient for understanding
the statistical dynamic properties of the f; process but also for parameter estimation. The
specification (14) can be extended to incorporate some exogenous variables or other functions

of lagged endogenous variables, or one could also consider long-memory specification of (14).
Given the linear updating in (14), the main challenge is to formulate the martingale inno-
vation s;. Here we adopt an observation-driven approach in which we formulate the innovation
term s; as a function of directly observable variables. Our modeling approach follows Creal
et al. (2013) by setting the innovation s; equal to the scaled score of the predictive likelihood
function. Under the assumption of correct model specification, the score has the convenient
property that it forms a martingale difference sequence. In particular, the score vector takes an

additive form given by

Ui = Olog i (Zi| frs Fi-1; )
Vi= Z Vi = Z of; ’ (15)
i—1 =1

which corresponds to the sum of individual scores. The existence of V, relies on the assumption
of differentiability of ; with respect to f; up to the first order. The scaling term is based on

the Fisher information matrix and can also be expressed in additive form,
m m
L= Tis =Y E[Viy Vi Fil. (16)
i=1 i=1

The existence of Z; relies on the assumption of differentiability of ; with respect to f; up to

the second order. The innovation term is now defined as

St :It_lvt, (17)



where the invertibility of Z; is assumed but is often simply implied by the choices of distribution
@i, for i = 1,...,m. Further, the martingale property of V; implies that E[s;|F;—1] = 0. In this
approach, the one-step ahead prediction of the time-varying parameter vector, fy41, is primarily
based on the scaled score that exploits the full likelihood contribution at time ¢. The score-
driven time-varying parameter equations (14) and (17) are formulated as in Creal et al. (2013),
for the case of the measurement distributions in (12). The details for the Realized-Wishart-
GARCH model are given next. In the remainder of this treatment, we consider the updating

equation (14) with p = ¢ = 1 to obtain
fir1 =w + Bfi + Asy, (18)
with A = Ay and B = Bj.

2.3 The details for the Realized-Wishart-GARCH model

We provide the details of the score-driven model as introduced above for the Realized-Wishart-
GARCH model with the time-varying covariance matrix V; = Vi(f;) for the specification that f;
simply represents all elements of V;. In particular, we require expressions for the score function
and the Fisher information matrix. Given the conditional independence assumption for the
variables in Z;, in our case Z} = 7} and Z? = X;, we can decompose the contribution of the

log-likelihood function (22) at time ¢ in two parts, that is
T
LW) =) L), Lo($) = Log+ Lz,

t=1

with the log-likelihood parts given by

1 1 1

Ly = idr(k) — §log IAV;A| — 5tr((AvtA’)*lrtr;), (19)
1 v—Fk—1 v 1% _

Lx; = 5dX(k,y) + ?log | X¢| — 51og \Vi| — §tr(Vt 'X), (20)

where d,.(k) = —klog (27), dx(k,v) = vklog (v/2) — 2log 'y (v/2) and T'g() is the multivariate
Gamma function for dimension k. In case of the Realized-Wishart-GARCH model, the two log-
likelihood expressions follow immediately since the distribution ¢ = W}(Hy, 1) is the singular
Wishart distribution and @9 = Wy (V;/v,v) is the k-th dimensional Wishart distribution.

Our aim is to specify a dynamic model for the matrix V; and the time-varying parameter

10



vector f; is therefore simply defined as
ft = vech(Wp), (21)

such that f; is a k* x 1 vector with k* = k(k + 1)/2. For the updating equation (14), we require

the score vector and Fisher information matrix that we obtain as described in Section 2.2.

Theorem 1. For the measurements densities (1) and (2), the score vector of dimension k* x 1

s given by
1
V= §D§€ (Vt_l ® X/;_l) <y- [vec(Xt) — VGC(Vt)] + [vec(Aflrtrl’f(A')*l) — vec(Vt)]>,

where Dy, is the duplication matriz as discussed in detail by Magnus and Neudecker (1979). O

Given the statistical properties in (8), it follows that E[V;|F;_1] = 0 under correct model
specification; it implies that V; forms a martingale difference sequence. The expression for the
score shows that for the updating of f;, and hence V;, information from the deviations of realized
covariance X; from its mean V; receives a weight v, whereas information from deviations of .7}
from V; receives a weight of one. This model feature is pertinent as the outer-product of daily
returns typically contains a weak signal about the current covariance of assets as it does not

exploit intra-day information.

Theorem 2. For the measurements densities (1) and (2), the conditional Fisher information

matriz of dimension k* x k* is given by

1+v

T, = B[V, V| Fi_1] = D (V' @V, ) Dy 0

The inverse of the conditional information matrix exists since we have assumed that V; is
nonsingular. This inverse matrix will be used to scale the score vector.

Theorem 3. For the measurements densities (1) and (2), the scaled score vector sy = I, 'V,

s given by

St =
v+

1 : (VVGCh(Xt) + Vech(A_lrtrg(A')_l)) — vech(V}). 0

The proofs of Theorems 1, 2 and 3 are given in Appendix A.

11



For the updating of the time-varying parameter vector f; in (18), and to avoid the curse of
dimensionality, we can consider specifications with diagonal matrices for A = diag(as, ..., ax+)
and B = diag(f, ..., Bk ), or with even more simpler scalar versions that have A = alp« and
B = [1Ii+«. We need to impose some constraints on the parameters to guarantee that the covari-
ance matrix V; is positive definite with probability 1. For the scalar specification, the conditions
a > 0 and 8 — a > 0 are sufficient to ensure that V; is positive definite. Other constraints are

needed for the diagonal specification which are discussed in more detail in Appendix C.

2.4 The Realized-Wishart-GARCH model with multiple measures

The results in Theorems 1-3 hold for our model with the two measurement equations (1) and (2).
However, it is straightforward to extend our Realized-Wishart-GARCH modeling framework to

incorporate several noisy measures of the daily equity covariance matrix V;. For example, let
Xi=V"2ivi? g~ Wil ), i=1,...,G,

where X/ is a noisy measure of the daily realized covariance matrix, for ¢+ = 1,...,G, with

G € N. We define v* = ZzG:I ' and we have

G
1 . . *

vV, = 51);,(1/1;1(591/;1) Z V' [vee(X{)—vec(V))], T, = E[V,Vi|F4] = D;(W1®W1)Dk%,

i=1
and

G '
Sp = (Z; y*vech(Xf)) — vech(V}),

where the numbers of degrees of freedom 1/1, uz, ey VG are estimated along with other model

static parameters. We notice that v* = 1 if X} = ry7} or for any matrix X} that has rank one.

3 Estimation procedure and Monte Carlo study

We discuss the maximum likelihood estimation procedure and present simulation evidence for
the statistical small-sample properties of the maximum likelihood estimation method for our

model. We study estimation performance for varying sample size T" and number of assets k.

12



3.1 Estimation procedure

The log-likelihood function is given by

M’ﬂ

Ly + Lx) (22)
t:l
where £, and Lx; are given in (19) and (20), respectively. The time-variation of V; is deter-
mined by the score recursion (14) and parameterization (21). The static parameter vector is
given by
¥ = (vec(A), o', vec(A)', Vec(B)'),,

and contains at least k2 4+ k(k + 1)/2 elements for w and A and more elements depending
on the specification of A and B; the number of parameters is therefore of order O(k?). The
computation of the log-likelihood function (22) requires the updating equations (18) that needs
to be initialized. It is natural to set sp = 0 and fy either to the unconditional first moment
estimated from the data or it can be added to the vector of parameters 1. In our empirical
analysis we set fp to be (the vec of) the sample average of the realized covariance matrices
X1,...,X7p. For a given parameter vector v, the log-likelihood function can be evaluated in a
straightforward manner. In practice, v is unknown and estimation of all parameters is carried
out via the numerical maximization of (22) with respect to ¢). The maximization relies typically
on a standard quasi-Newton numerical optimization procedure; the initial values for ¢ can be
determined through a grid search method. For both the simulation study and the empirical
application, the model parameters are estimated using numerical derivatives.

As the dimension k increases, parameter estimation can become computationally demanding.
A possible approach to reduce the number of parameters can be based on covariance targeting
as proposed by Engle and Mezrich (1996) for GARCH models. Since the updating equation
(18) admits a vector autoregressive moving average (VARMA) representation, an analytical
expression for the intercept can be provided, if stationarity conditions are satisfied. When we

replace w in (18) by its unconditional mean, we obtain

ft+1 = (- — B)E[fi] + Bft + Asy,

where E[f;] is replaced by vech(7~! Zthl Xt). The introduction of targeting leads to a two-step

approach in estimation. We first remove the vector of constants by replacing it through some

13



consistent estimator of the unconditional mean. Then maximize the log-likelihood function with
respect to the remaining parameters. To avoid the curse of dimensionality further, parameter

reductions can be achieved by setting A and B as diagonal matrices or to scalars.

3.2 Monte Carlo study

We study properties of the likelihood-based estimation method by means of simulation exercises.
We consider a dimension of k& € {2,5,10} and we simulate a series of T' € {250, 500, 1000} daily
returns and daily covariance matrices. For simplicity, we study the scalar specification for the
time-varying parameter (18) with A = alp« and B = SIx«. We further consider that all elements
of A are the same, that is \; ; = A, for 4,5 = 1,..., k. The Monte Carlo data generation process

has adopted the following parameter values

v=k+10, w=0.10vech(l;), B=097, «a=030, A=1, (23)

These parameter values are roughly in line with the empirical estimates that we present in
Section 4. A close-to-unity value for the autoregressive coefficient g = 0.97 is typically found
in many volatility studies. We simulate 5000 datasets in our Monte Carlo study. For each
generated dataset, we maximize the likelihood and we collect the estimates of parameters (23).
We estimate the parameters without constraints but with covariance targeting. We emphasize
that we do not simulate intra-day prices as we do not analyze the properties of high-frequency
realized measures but we only aim to validate the estimation procedures for our model.

In Figure 1 we present the density kernel estimates of the histograms of the 5000 estimates
for each parameter in . Each graph contains three densities which are associated with the
three time series dimensions 250, 500 and 1000. For an increasing sample size T, the estimates
concentrate more at their true values while the densities become more symmetric. We find some
more skewness and heavy tails in the densities of the estimates obtained from the smaller sample
size T' = 250. In particular, the density for the memory parameter § is skewed to the left and
the mode is shifted to the left near 8 = 0.97. This bias for 8 in small samples is somewhat
expected since autoregressive coefficients require generally a relatively long time series for its
estimation. Moreover, it is likely that the ad-hoc treatment of the initial value fy will require
some strong adjustments for f; in the first part of the sample. This will cause a (negative) bias
in the estimation of § for relatively small samples. For an increasing sample size, this initial

estimation bias will vanish. The number of degrees of freedom of the Wishart distribution v
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Figure 1: Parameter estimate densities
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is estimated rather accurately, even for moderate sample sizes. This finding is promising but

somewhat surprising given that v is a highly nonlinear parameter.

By increasing k, this is the number of assets in our simulation study, the shapes of the

densities become considerably more symmetric and more peaked around their true values; in

particular, compare the panels for k = 2 and £ = 10. We notice that in the Monte Carlo study

our parameterization is parsimonious and therefore increasing k£ will lead to more pooling for

the estimation of the parameters. Also, the data size increases with k? while the number of

parameters increases with k. The improvement is however remarkable for parameters a and

8. We may conclude overall that the maximum likelihood method is successful in the accurate

estimation of model parameters.

4 Empirical illustration

4.1 Dataset: open-to-close daily returns and realized covariance matrices

In our empirical study for a portfolio of equities, we aim to measure the variation across firms

and across market conditions.

15

The equities consist of fifteen Dow Jones Industrial Average



components with ticker symbols AA, AXP, BA, CAT, GE, HD, HON, IBM, JPM, KO, MCD,
PFE, PG, WMT and XOM. The empirical study is based on consolidated trades (transaction
prices) extracted from the Trade and Quote (TAQ) database through the Wharton Research
Data Services (WRDS) system. The time stamp precision is one second. The sample period
spans ten years, from January 2, 2001 to December 31, 2010, with a total of T'= 2515 trading
days for all equities.

We analyze these 15 equities using the Realized-Wishart-GARCH model for different dimen-
sions of k € {2,5,15}. To conserve space, we will present results for a randomly selected set of
ten bivariate models and ten 5-variate models amongst the 15 equities; the random selection is
justified as our primary aim is to verify estimation results, to understand their implications and
to detect similarities. We also present results for our model with all 15 equities included which
requires the modeling of a 15 x 15 conditional covariance matrix. The sample period 2001-2010
represents two characteristic periods: first a period of low volatility and then a period of high
or even extreme volatility due to the “financial crises”. The length of a ten-year period is rather
standard in the GARCH literature.

In our study we have followed the standard practice of excluding the overnight return for the
computation of realized measures while daily asset returns can be based on both open-to-close
and close-to-close returns. The vector of daily asset returns r; is taken as open-to-close returns
in our study. The conditional covariance matrix H; therefore measures the intra-day variations
and co-variations. Hence the covariance matrices H; and V; contain similar information. Given
the specification Hy = AV;A’ in (7), we may expect matrix A to be close to an identity matrix.
However, the diagonal elements may be close to unity, the off-diagonal elements may reveal
some interesting information on cross-asset or spillover effects. When we would have considered
close-to-close returns, the overnight market risk, specific for each individual stock, would have
been accounted for by the parameter matrix A; this overnight effect is of key interest to many
market players such as liquidity providers or market makers who generally want to minimize
this risk and hedge it effectively.

Before we compute the realized measures, we carry out cleaning procedures to the raw
transaction data. The importance of tick-by-tick data cleaning is highlighted by Hansen and
Lunde (2006) and Barndorff-Nielsen et al. (2009) who provide a guideline on cleaning procedures
based on the TAQ qualifiers that are included in the files (see TAQ User’s Guide from WRDS).

In particular, we carry out the following steps: (i) we delete entries with a time stamp outside

16



the 9:30am-4:00pm window; (i7) we delete entries with transaction price equal to zero; (ii7)
we retain entries originating from a single exchange (NYSE in our application); (iv) we delete
entries with corrected trades (trades with a correction indicator, “CORR” # 0); (v) we delete
entries with abnormal sale condition (trades with “COND” has a letter code, except for “E" and
“F"); (vi) we use the median price for multiple transactions with the same time stamp; (vii) we
delete entries with prices that are above the ask plus the bid-ask spread.

For the computation of the realized covariance matrices, we adopt a kernel that is based on
a subsampling scheme. We use an overall sample frequency of 5 minutes and adopt the refresh
sampling scheme of Barndorff-Nielsen et al. (2011b). The refresh sampling scheme refers to the
irregular sampling over time: a time interval ends when at least one realization is recorded for
all considered k stocks. By shifting the starting time by 1-second increments, we obtain 300
different estimates in a 5 minutes interval; the average is our subsampled realized covariance
measure. Table 1 provides the number of observations and Table 2 provides the data fractions
that we have retained in constructing the refresh sampling scheme. Given the dimension k, we
record the resulting daily number of price observations. These statistics are averaged for each
year in our sample. We observe that for the 2 x 2 datasets we retain on average of around
60 — 65% observations; this fraction is somewhat robust over time and across equities. The
average number of refresh time observations is around 2800 and it moderately varies in time
with higher volatility during the financial crisis period of 2007-2009. For the 5 x 5 case the data
loss is more pronounced. We retain around 35 — 40% and we have 1800 refresh observations
on average. For the 15 x 15 case, the overall average of fraction of retained observations equals

around 22% while the average number of observations is around 950.

4.2 Estimation results

We present the parameter estimation results from the Realized-Wishart-GARCH model when
applied to the datasets as described. The dynamic specification for the covariance matrix V;
is based on the updating equation (18) for f; = vech(V;) with A = aly« and B = fli+. In
Appendix C, we consider the estimation results for a less parsimonious specification that allows
for different dynamics for the variances (o, and ,) and covariances (. and 5.). The additional
results do not suggest that a more flexible specification provides better results compared to those
for the basic specification. We also investigate the presence of cross-effects by having A as a

diagonal matrix and as a full matrix. When off-diagonal elements of A are estimated to be
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significantly different from zero, it implies that cross-effects are present. Table 3 presents the
maximum likelihood estimation results for the parameters in the Realized-Wishart-GARCH
model for £k = 2. We report the estimates of the models for a full matrix A (first panel) and
for a diagonal matrix A (second panel). The estimates of the diagonal elements of A tend to be
close-to-unity but most have estimated values just below unity, the smallest estimate is 0.88 and
the largest is 1.03. Many off-diagonal elements are estimated as not being significantly different
from zero, only five out of twenty appear to have some statistical impact. The significantly
estimated off-diagonal elements of A are all positive and range from 0.03 to 0.23. Although in
most cases, the Akaike information criterion (AIC) points weakly towards a model specification
with a full A matrix, other aspects of our analyses, including the estimates of v, 5 and «, are
not affected when we restrict A to be diagonal. Table 4 presents the results for the model with
k =5 and Table 5 presents those for the model with k = 15, both with a diagonal matrix A.
Taking all results together, the estimates of the parameters amongst the different stock
combinations are very similar. In general, we find that the estimates of 3 are close-to-unity from
which we can infer that the time-varying process of the covariance matrix is highly persistent.
We also observe that the dynamics of V; rely more on the realized kernel measures given the
highly significant estimates of v. Furthermore, we find that for a higher dimension k, the
estimates of v become higher and more significant. It implies that for models with more stocks,
more reliance is given to the realized measures. We emphasize that the degrees of freedom v
needs to grow with the dimension k in order to ensure that the Wishart covariance matrix does
not become non-singular; see Seber (1998, Section 2.3). However, when the dimension of & is
fixed, a larger value for v implies that the information coming from the realized measure is
given more prominence in our Realized-Wishart-GARCH model. The estimates of v appear to
be higher in relation to the dimension k£ and we therefore conclude that the realized measures

play a considerable role in our analysis.

4.3 Forecasting study: other forecasting models and methods

In our forecasting study, we compare the out-of-sample performance of the Realized-Wishart-
GARCH (RWG) model against four alternative forecasting models and methods. Our model
allows for a joint analysis of daily returns and realized variance variables. In our comparisons,
we consider two forecasting approaches for daily returns and two for realized measures. The

two models for the vector of daily returns are the dynamic conditional correlation (DCC) model
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15 x 15 AA/../XOM

v 29.260
(0.060)

B 0.990
(0.000)

e 0.187
(0.001)

A1 0.966
(0.012)

A22 0.978
(0.012)

A33 0.992
(0.013)

A4 0.990
(0.012)

As5 0.908
(0.010)

A66 0.943
(0.012)

Ar7 0.922
(0.011)

Ass 0.985
(0.012)

Agg 0.951
(0.012)

A1010 0.928
(0.012)

Al111 0.954
(0.013)

A1212 0.954
(0.013)

A1313 0.900
(0.012)

Al414 0.903
(0.011)

A1515 0.952
(0.012)

log L -61418.1

Table 5: Maximum likelihood estimates for the 15 x 15 model. Standard errors are shown in
parentheses.
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of Engle (2002a) and the so-called BEKK model of Engle and Kroner (1995). The model-
based forecasting framework for the realized covariance matrix is the conditional autoregressive
Wishart (CAW) model of Golosnoy et al. (2012) while the non-parametric forecasting method
is based on the exponentially weighted moving average (EWMA) scheme. In the forecasting
study, we consider the scalar specifications for the updating of the conditional covariance matrix
in the RWG model but also, where applicable, for the DCC, BEKK and CAW models. Finally,
we assume matrix A to be diagonal in the RWG model. A short practical introduction to each
model is provided next.

The CAW model assumes that the conditional distribution of the realized variance is Wishart

with scale matrix V¢ and degrees of freedom v¢, we simply have X;|Fi_1 ~ Wi (V€ /v¢,v°). The
updating of the conditional covariance matrix is also subject to covariance targeting and to the

scalar specification, that is
Vii=1-8"—a)X + B8V f+aXy, B°>0, a°>0, a°+p°<1,

for t = 1,...,T and with X = (1/T) Zle Xi. The EWMA method is the one-step ahead

forecasting scheme applied to the realized variance series; it is the default method used by
practitioners and regulators; see, for example, RiskMetrics as described by J.P.Morgan (1996).

The updating equation also has a scalar specification and is given by

Vi =8 Vie+ (1 -6 X, 0<p°<,

where we treat B¢ as a fixed smoothing constant that we set equal to 8¢ = 0.96. In our
implementation, we can regard EWMA as a special or limiting case of CAW with a¢ = 0.04

and B¢ = 8¢ = 0.96. The DCC model assumes that the daily returns vector is conditionally

normally distributed as r¢|F;_1 ~ N(0, V%) with its covariance matrix given by th+1 = DRy Dy
where Dy is a diagonal matrix with its i-th diagonal element given by \/m and where R; is
the conditional correlation matrix with R; = diag[Q;]~"/2Q;diag[@Q;]~'/2, for t = 1,...,T. The
updating of h;; and @ takes place in two different steps. It is assumed that h;; follows the
GARCH(1,1) process as given by

2
higr1 = wi + B iy + of Tt w! >0, B >0, af >0, of + 8] < 1,
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fori=1,...,k and where r;; is the ith element of daily return vector r;. The scalar updating

equation with covariance targeting for ), is given by
Qt = (1 - B+ _a+)Q+ﬂ+ Qt +a+6t€{fa /B+ > 07 aJr > 07 O[+ +6+ < 17

where ¢ is the GARCH residual vector with its ith element given by €;; = 74/ +/hi, for

i=1,....,k,and Q = T! Zthl ere,. The BEKK model assumes that r:|F;_1 ~ N(0,V,?) and
the covariance matrix of the vector of asset returns is driven by the outer-products of daily

returns. The scalar updating equation with covariance targeting is given by
Vii=(1 -8V + 8Vt ablrr,,  B2>0, o’ >0, o +8° <1,

where V = 77! Zle ¢, is the sample covariance matrix of daily returns, and a® and b are

unknown coefficients.

4.4 Forecasting study: design and forecast loss functions

We split our original dataset in two subsamples: the in-sample data consists of the years 2001-
2008 and the out-of-sample consists of the years 2009-2010. We consider these last two years as
our forecasting evaluation period. The years 2009-2010 are somewhat representative of financial
markets. In 2009 many large equity recovery operations have taken place in the U.S. while 2010
has shown a return to a modest market risk.

The estimation of the static parameter vector, for all model specifications, is done only once
for the in-sample data. The one-step ahead forecasts are generated for the out-of-sample data
(without the re-estimation of static parameters), for all model specifications. The evaluation of
the out-of-sample forecasts is based on the Diebold-Mariano (DM) test to assess the statistical
significance of the superiority of the forecasting performance of a specific model; see Diebold and
Mariano (1995). In our study, we test whether our Realized-Wishart-GARCH (RWG) model has
a significantly smaller out-of-sample loss compared to the loss of the other considered models in
our forecasting study. For this purpose, we measure the performance of the models by means

of two loss functions: the root mean squared error (RMSE) based on the matrix norm given by

1/2
RMSE(V;, Sp) = ||S: — Vi||Y/? = [Z(Sij,t - Vij,t)2:| :

i’j
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and the quasi-likelihood (QL) loss function as given by
QL(V:, 8t) =log [Vi| + tr(V,7'51),

where S; is an observed measure of the covariance matrix and V; is the covariance matrix as
predicted by the model or method. Given that we jointly analyze r; and X; with our RWG
model, we evaluate the performances of all models in forecasting the daily returns density and
the realized variances and covariances. Therefore S; = X; for the forecasting of the realized
covariance matrix and S; = 7 for the forecasting of the density in daily returns. We notice
that in case of daily returns with Sy = r47}, the quasi-likelihood loss is equivalent to the log-score
criterion for a Gaussian distribution. The log-score criterion is widely used in density forecast

comparisons between different models; see Geweke and Amisano (2011).

4.5 Forecasting study: empirical results

The results of our forecasting study are summarized in Tables 6 and 7: in Table 6 we report
the forecasting results for the realized covariance matrix and in Table 7 for the density in daily
returns. Both tables display the relative value of the loss function for our RWG model against
the other models. We measure the relative performance by the ratio between the loss for a
given model and the loss for the RWG model. When a model has a relative performance larger
than unity, the implication is that it underperforms the RWG model. The opposite is also true.
When the relative performance is smaller than unity, the model outperforms the RWG model.

We learn from Table 6 that the RWG and CAW models are the best performing models in
forecasting the realized measures. Their performances are very similar in relative terms and,
except for a few cases, there is not a statistically significant difference. This finding is to be
expected given that the daily returns are not very informative to forecast the realized measures.
Therefore the RWG model is not expected to outperform the CAW model by a large amount.
However, from Table 7 we can conclude that the RWG model is by far the best performing model
in forecasting the density in daily returns. The outperformance is in relative terms as well as in
statistical terms because the reported DM tests are clearly significant in most cases. Here the
RWG is able to outperform the DCC and BEKK convincingly. The reason is obvious since it
exploits additional information as provided by the realized measures. In a similar fashion, the
RWG model outperforms the CAW model and the EWMA method since our preferred model

analyzes the daily returns jointly with the realized measures. On the other hand, the CAW
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model and the EWMA method only consider the realized measures. We can therefore conclude
that the factor structure of the RWG model is particularly useful in exploiting the realized

measures for the forecasting of the density in daily returns.

5 Conclusions

We have proposed a new model for the joint modeling and forecasting of daily time series
of returns and realized covariance matrices of financial assets: the Realized-Wishart-GARCH
model. There are many distinguishing features of our model when compared to alternative
frameworks. First, the model relies both on low- (daily) and on high-frequency (intra-day)
information. It turns out that the high-frequency measures are given most weight since they
exploit intra-day data of financial assets to infer about the underlying covariance structures.
Several noisy measures that are based on different sampling frequencies can be considered in
the analysis. Second, the time-varying features of the Realized-Wishart-GARCH model are
driven by updates of the covariance matrix that exploit full-likelihood information. The model
relies on standard parsimonious formulations which is a convenient property for multivariate
conditional volatility models. In particular, the model is closely connected with the multivariate
GARCH literature and the dynamics are related with vector autoregressive moving average
models. Third, the model parameters can be interpreted straightforwardly. An example is that
overnight market risk can be measured directly via the parameter matrix A when daily close-
to-close returns are considered in the analysis. Fourth, the modeling framework is flexible: it
can be extended easily when more realized measures are considered. The multivariate model
can also be used to simulate realistic dynamic paths for portfolios in order to facilitate the
validation of investment strategies. Fifth, the likelihood function is available analytically and
hence estimation is easy; nonetheless computer code is made available for its use. Finally,
in an empirical study for a portfolio of fifteen NYSE equities, we have studied the Realized-
Wishart-GARCH model and its different specifications. We have provided in-sample evidence
that our basic specification can be effective in extracting the salient features in the data. In an
out-of-sample forecasting study we compare our model performance against four competitive
models and methods. The ability of our model to jointly capture the daily returns vector and
the realized covariance matrix appears in particular to benefit the accuracy in forecasting the

density of daily returns.
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APPENDICES

A Matrix Notation and Preliminary Results

The results in this paper make use of the following matrix notation and definitions. Let A and
B be k x k matrices, then A® B denotes the Kronecker product, which is a k? x k? block matrix
{aij B} where a;; is the (4, j) element of matrix A. The vec(A) operator stacks the columns of
matrix A consecutively into the k% x 1 column vector, while vech(A) stacks the lower triangular
part including diagonal into k* x 1 column vector, with k* = k(k + 1)/2. The k x k identity
matrix is denoted by Ij,. We define the k? x k? commutation matrix K}, the k? x k* duplication

matrix Dy, and the k* x k? elimination matrix Ly, by the identities
Kyivec(B) = vec(B'), Dyvech(A) = vec(A), and Lyvec(A) = vech(A4),

where B is an arbitrary k x k& matrix and A is an arbitrary symmetric £ x k matrix. Here
Ly = (D},Dy)"'Dj, is the Moore-Penrose inverse of the duplication matrix Dy. Additional
properties and results related to these matrices can be found in Magnus and Neudecker (2007)
and Seber (2007).

The proofs in the next appendix make use of the following results in matrix calculus. For a

k x k symmetric matrix X, the derivative of vec(X) with respect to vech(X) is given by

Ovec(X)

IR _ p
dvech(X)’ o

where the duplication matrix Dy, is defined above. For all k x k nonsingular matrices A, X and

B, we have

Jlog|AX B|

dvec(X) = vee(XNT,
dvec(X~ 1) 1y _
ovec(X) ~(XTex,
Otr(AXB) P
veeX) vec(A'B")". (24)

Finally, for all k& x k matrices A, B and C, we have

vec(ABC) = (C'® A)vec(B). (25)
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B Proofs

Proof of Theorem 1. We derive the score vector of which the general form is given by (15).
From the equations (19) and (20), the relevant parts of log-likelihoods for the score vector

derivation can be explicitly given as in

1

Loi = cT—2<1°g \AWA’IHr((AVtA/)l”’"i))’ 20)
14

Lxe = ex— g (1o W+ (v 1) ). (21)

where ¢, and cx are non-relevant constants. We consider the covariance matrix V; and parameter
vector fi, given by (21), as two unknown, non-random variables. Using the chain rule for vector
differentiation, the score functions for the individual measurements associated with (1) and (2)

can be expressed by

dlog pi(Zi| fr, Fi—1; ) _ dlog 0i(Zi| fr, Fi—1;¢) Ovec(V3)
aoff ovec(Vp) aoff

We first differentiate the measurement density for returns (26). Using (24) and (25), together

with noting that V; is symmetric and V;~ = V;"'V;V, !, we obtain

OLys 1

avT(Vt)’ = -5 [Vec(Vt_l)’ — vec(A*lrtr,'f(A’)fl)'(Vt_1 ® Vt_l)]
= 5 ey @ VY —vee (At (W)Y (v @ 1Y)
= % [vec(A ™ ryry(A)) 1) — vee(V)'] (Vi @ VY, (28)

and similarly we differentiate the measurement density for the realized covariance (27), we have

oL v _ _ _
mﬁ’é), = —5["6(3(‘4, N —vee(Xy) (V' @ V)]

= = e (5 @ Vi) = vee X (7 @ %)

= glvee(Xy) —vee(W'(V; @ V7). (29)

Therefore, given the results (28) and (29), combined with the fact that dvec(V;)/0f] = Dy and
with the score defined in (15), we conclude that the proof of Theorem 1 is completed. O

Proof of Theorem 2: We derive the Fisher information matrix whose general form is given

by (16). Using the results from the proof of Theorem 1, the individual score functions are given
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Vit = %D; (Vt_1 ® Vfl) [Vec(A_lrtré(A')_l) — vec(V3)],
Vxt = gD;f (Vt_1 ® Vt_l) [vec(Xy) — vec(V4)],

for the measurement densities of the vector of returns and of the covariance matrix, respectively.

By taking E[Vi7tvgyt|ft,1], we obtain

)

1
T, = ZD;C(v,;1 ® V, Yvar [vec(A ™ ryry ()71 — vee(Vy) | Fi1] (VP @ V1) Dy,

)

2
Ix;: = VZD;C (Vt_l ® Vt_l)var [vec(Xt) — Vec(Vt)\}}_l] (Vt_l ® Vt_l)Dk.
Using the results (10) and (11), and given that (V,"' @ V" 1)(V; ® V;) = I;2, we have

1 _ _
Iy = ZD;c(V;f '@ VN (e + Ky) Dy,

v _ _
Ix: = ZD;(W '@ VY (Ihe + Ky) Dy

Finally, considering that I2 + K = 2DyLj (see Theorem 12 in Chapter 3 of Magnus and
Neudecker (2007)) and that LyDy, = Ij~, we obtain

1
L. = DL e VD

Lo = DLV @D

which combined with (16) completes the proof. O

Proof of Theorem 3: The score V; can be written as

1

Vt:§

Dy, (V;_l ® Vt_l)DkLk <1/[vec(Xt) — Vec(Vt)] + [VeC(A_lrtr,'f(A’)_l) — VGC(W)]),

since D, (V; ' @ V; 1) Dy Ly, = D} (V; ' @ V;1); see Theorem 13 in Chapter 3 of Magnus and
Neudecker (2007). Together with the expression of the conditional Fisher information Z; =
v DL (Vi @ V1) Dy, and the equality (D (V, ™' @ V") Dy) ™ Dy (V' @ Vi Y Dy = Iy, we

have completed the proof for Theorem 3. O
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C Additional estimation results

In this Appendix we consider a less parsimonious dynamic specification for the covariance matrix
Vi: we allow variances and covariances to have different persistency levels. The empirical results
do not suggest that the more general specification leads to improvements in terms of in-sample
goodness-of-fit.

We consider matrices A and B in (18) to be diagonal matrices where the coefficients a; and 3;
corresponding to a conditional variance are set equal to «,, and (,, respectively. The coefficients
«; and (; corresponding to a conditional covariance are set equal to «a. and f., respectively.
The matrices A and B can also be defined as A = diag(vech(A)) and B = diag(vech(B)). The
matrix A is a k x k matrix with diagonal elements equal to a,, and outer diagonal elements equal
to a. Similarly, the matrix B is a k x k matrix with diagonal elements equal to 8, and outer
diagonal elements equal to 8.. This specification allows us to explore whether the variances and
covariances have different dynamic properties.

We impose the additional parameter constraints o, > a. > 0 and B, — ap > 8. — ae > 0 to
ensure that V; is positive definite with probability 1. These constraints can be easily obtained

when we notice that the covariance matrix V; can be expressed as

vzﬂ=E[Vt](fk—B)+<B—fl)@w+A@<

” ! 1 (vXt + A_lrtrg(A/)_1)> ,

where ® denotes the Hadamard product. Therefore we impose that B — A and A are positive
definite, which leads to the parameter constraints as stated above. Imposing B— A and A to
be positive definite also guarantees that V; is positive definite by an application of the Schur
product theorem.

We estimate the parameters for the 2 x 2 models of Table 3 and consider both the case
where A is a full matrix and the case where A is a diagonal matrix. The results are reported in
Table 8. The results suggest that the variances and covariances have the same dynamics, that
is, a, = o and (B, = B.. This can be concluded since the estimates of oy, and a., as well as (3,
and f,, are not significantly different from each other. Finally we notice that imposing a, = a.

and (8, = B, leads to the scalar models that are estimated in Table 3.
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